期刊文献+

解高维热传导方程的一族高精度的显式差分格式 被引量:21

A CLASS OF HIGH ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING PARABOLIC EQUATIONS OF HIGH\|DIMENSION
下载PDF
导出
摘要 本文构造出针对三维和四维热传导方程的一族高精度的显格式,其截断误差阶达到 O(τ2+ h4),并给出了稳定性条件,通过数值实例。 In this paper, a class of explicit three\|level symmetrical difference schemes with parameters for solving parabolic partial differential equations of three\| and four\|dimension is considered.The stability condition and local truncation error for the schemes are discussed.
作者 孙鸿烈
机构地区 辽宁大学数学系
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 1999年第4期427-432,共6页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 辽宁省教委自然科学基金
关键词 热传导方程 显式差分格式 截断误差 初边值问题 Parabolic Partial Differential Equation, Explicit Difference Scheme, Local Truncation Error, Conditionally Stable.
  • 相关文献

参考文献4

  • 1周顺兴.解二维和三维抛物型偏微分方程绝对稳定的差分格式[J].计算数学,1980,2(1):90-99.
  • 2马驷良.二阶矩阵族G^n(K,△t)一致有界的充要条件及其对差分方稳定性的应用[J].高等学校计算数学学报,1980,2(2):41-53.
  • 3马驷良,高等学校计算数学学报,1980年,2卷,2期,41页
  • 4周顺兴,计算数学,1980年,2卷,1期,90页

共引文献5

同被引文献63

引证文献21

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部