期刊文献+

基于遗传算法的机床加工任务调度研究 被引量:1

Genetic Algorithms for Machining Task Scheduling
原文传递
导出
摘要 基于遗传算法,解决车间生产任务调度的问题。生产调度是自动化制造系统能否取得预期经济效益的关键技术之一,目标是缩短制造周期,提高生产资源利用率,保证生产任务按时完成。其中把加工刀具的分配作为首要约束条件,同时考虑加工工序的前后顺序,利用顺序交叉(OX)方法和顺序变异方法分别完成交叉变异过程。本文所编写的算法使任务调度程序与刀具管理相结合,调度结果更接近实际情况。另外根据刀具使用情况、刀具数量和加工任务以及加工任务的交货期,在出现多个任务竞争一把刀具时,解决刀具的分配问题,并根据工序加工时间和交货时间建立调度优先级。通过实际生产应用证明,优化计算结果具有较好实际应用价值。本文利用VisualBasic软件和SQL数据库作为工具,研究并开发了调度管理系统,主要包括任务编排,生产调度,刀具管理等功能。 Production scheduling is one of the key technologies for the automatic control system, and is able to influence the desired economic benefits. The purpose of the scheduling is to shorten the manufacturing cycle, to improve the utilization of resources, and to ensure the production task that would be finished in time. Based on the genetic algorithm method, the problems of production scheduling in the workshop are solved. The distribution of the processing tool is considered as a primary constraint during the process, and the order of working process is also considered. The order crossover (OX) methods and sequence variation method are used to complete the genetic variation process. The scheduling is combined with the tool management in the algorithm; therefore the result is much closer to the actual situation. The system is able to complete the production scheduling and cutting tools distribution according to the manufacturing task and task rank. The interface for the operator is also programmed to make sure the system could be used in the daily work. The computational results show that it is effective, and the scheduling results are optimized. The system mainly possesses task arrangement, production scheduling, and cutting tools management functions.
出处 《科技导报》 CAS CSCD 北大核心 2011年第20期27-30,共4页 Science & Technology Review
基金 上海市科学技术委员会基金资助项目(10DZ2292100)
关键词 机床加工调度 遗传算法 刀具分配 染色体编码 machining task scheduling genetic algorithm tools distribution chromosome coding
  • 相关文献

参考文献5

二级参考文献25

  • 1张华,陶泽.基于混合遗传算法的车间调度问题的研究[J].机械设计与制造,2005(3):129-131. 被引量:6
  • 2谢丽芳,费跃农.一种基于模拟退火算法的作业车间调度算法[J].中国制造业信息化(学术版),2006,35(5):50-53. 被引量:1
  • 3董朝阳,孙树栋,张波.免疫遗传算法求解工艺规程及作业调度协同优化[J].机械科学与技术,2007,26(6):761-766. 被引量:3
  • 4KACEM I, HAMMADI S, BORNE P. Approach by localization and multi -objective evolutionary optimization for flexible job- shop scheduling problems [J]. IEEE Transactions on Systems, Man. and Cybernetics, Part C,2002,32 ( 1 ) :408-419.
  • 5玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 6阎平常 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000..
  • 7Shigeyoshi T,Ghosh A.Genetic algorithms with a robust solution searching scheme[C] // IEEE Transaction on Evolutionary Computation,1997,1(3):201-208.
  • 8De Jong K A.An analysis of the behavior of a class of genetic adaptive systems[D].MI:University of Michigan,1975.
  • 9Grefenstette J J.Optimization of control parameters for genetic algorithms[J].IEEE Transaction on Systems,Man and Cybernetics,1986,16(1):122-128.
  • 10Shi Leyuan,O lafsson Sigurdur.Nested partitions for global optimization[J].Operational Research,2000,48(3):390-407.

共引文献25

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部