期刊文献+

一种基于USAN的特征点检测算法 被引量:4

An Algorithm for Feature Points Detection Based on Univalue Segment Assimilating Nucleus
下载PDF
导出
摘要 SUSAN角点检测算子的提出是以假设待测角点是L型为前提的,这就造成了SUSAN算子在检测角点时以USAN区域的大小为判据的局限性。实际上,当USAN区域的大小等于SUSAN圆模板面积的一半的时候,常常会出现错误的检测结果。在分析图像各特征点的本质区分的基础上,在SU-SAN圆模板内,附加了一个圆环模板,并以圆环模板上灰度的跳变次数为辅助判据,来弥补SUSAN算子的不足。此外,SUSAN算子USAN区域的划分是基于固定灰度差阈值的,这对于具有不同对比度的图像的角点提取很不利。鉴于此,提出了一种基于迭代运算的灰度差阈值的计算方法,在每个像素位置,通过迭代运算计算其对应SUSAN圆模板内的灰度差阈值,得到更合理的USAN区域。所提出的算法以USAN区域大小为第一判据,再辅以圆环模板上的灰度跳变次数为第二判据,从而为特征点的检测提供了双重保障。实验结果表明,算法可以准确、可靠地提取出各种不同类型的角点。 The SUSAN(Smallest Univalue Segment Assimilating Nucleus) corner operator is proposed under the assumption that the corners to be detected are L-shaped,which results in SUSAN operator′s limitations in using USAN(Univalue Segment Assimilating Nucleus) region′s size as the criterion.In fact,wrong detections often happen when the USAN region′s size is equal to half of the area of the SUSAN circular mask.A ring-shaped mask was attached within the SUSAN circular mask based on the analysis of essential distinction of various image features and the times of intensity change was used as the criterion to overcome the deficiency of SUSAN operator.In addition,the USAN region is obtained by using a fixed brightness difference threshold,which is disadvantageous for corner detection with different contrast image.Therefore,we propose an iterative calculating method for brightness difference threshold,and calculates the brightness difference threshold of the corresponding SUSAN circular mask at each pixel location by iterative operation whereby to obtain a more pretty USAN region.The proposed algorithm provides double assurance by using the size of USAN region as the first criterion and supplementing the times of brightness change as the second criterion.Experimental results show that the algorithm can accurately and reliably extract various types of corners.
出处 《机械科学与技术》 CSCD 北大核心 2011年第7期1120-1123,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家重大专项项目(2009ZX04001-065)资助
关键词 USAN区域 特征点检测 SUSAN算子 灰度差阈值 USAN region feature points detection SUSAN operator brightness difference threshold
  • 相关文献

参考文献10

  • 1赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19. 被引量:84
  • 2Fleeman H, Davis L S. A corner finding algorithm for chain co- ded curves [ J ]. IEEE Transactions on Computers, 1977,26 (3) :297 - 303.
  • 3Medioni G, Yasumoto Y. Comer detection and curve representa- tion using cubic B-spline[ J]. Computer Vision Graphics Im- age Process, 1987,39:72 -78.
  • 4Rattarangsi A, Chin R T. Scale-based detection of comers of pla- nar curves[J]. IEEE Tranmctions on Pattern Analysis and Machine Intelligence, 1992,14:430 -449.
  • 5Garrido A, Blanea N, Vente M. Boundary simplification using a mutiscale dominant-point detection algorithm [ J ]. Pattern Rec- ognition, 1998,31 (6) :791 - 804.
  • 6Yeh C H. Wavelet-based comer detection using eigenvectors of covariance matrices [ J ]. Pattern Recognition Letters, 2003, (24) :2797 -2806.
  • 7Kitchen L, Rosenfeld A. Grey-level comer detection [ J ]. Pat- tern Recognition, 1982, ( 1 ) :95 - 102.
  • 8Harris C, Stephens M. A combined comer and edge detection [ A]. In: Proceedings of the 4th Alvey Vision Conference [C], 1988.
  • 9Smith S M, Brady J M. SUSAN-new approach to low level image processing[ J]. Computer Vision, 1997,23 (l) :45-78.
  • 10刘苏宜,王国荣,石永华.V型焊接坡口中心的高精度提取方法[J].机械科学与技术,2008,27(2):209-212. 被引量:8

二级参考文献35

共引文献90

同被引文献42

  • 1胡宝洁,曾峦,熊伟,赵忠文.基于立体视觉的目标姿态测量技术[J].计算机测量与控制,2007,15(1):27-28. 被引量:14
  • 2王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 3Quinlan J R. C4. 5 : Programs for machine learning. San Mateo,Califo-rnia :Moi^anKanfmann Publishers, 1993 : 17-32.
  • 4Else3时王侠.基于粗糙集理论和C4.5算法相结合的遥感影像分类研究.福州:福建师范大学,2008.
  • 5Smith S, Brady M. A new approach to low level image process-ing. International Journal of Computer Vision,1997 ;23( 1 ) :4578.
  • 6Lowe D G.Distinctive image features from scale-invariant keypoints[J].International journal of computer vision,2004,60(2):91-110.
  • 7Bay H,luytelaars T,Van Gool L.Surf:Speeded up robust fea-tures[M].Computer vision ECCV 2006.Springer Berlin Heidelberg,2006:404-417.
  • 8Leutenegger S,Chli M,Siegwart R Y.BRISK:Binary robust invariant scalable keypoinls[C].Computer Vision(ICCV),2011 IEEE International Conference on.IEEE,2011:2548-2555.
  • 9Hublee K,Rabaud V,Konolige K,et al.ORB:an efficient alternative to SIFT or SURF[C].Computer Vision(ICCV),2011 IEEE International Conference on.IEEE,2011:2564-2571.
  • 10Alahi A,Ortiz R,Vanclergheynst P.Freak:Fast retina keypoint[C].Computer Vision and Pattern Recognition(CVPK),2012 IEEE Conference on.Ieee,2012:510-517.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部