期刊文献+

概念研究:设计发展教师学科知识 被引量:1

Concept Studies:Designing Settings for Teachers’ Disciplinary Knowledge
原文传递
导出
摘要 目前大多数关于数学教师学科知识的研究都集中在描述其学科知识的特质及其与学生学习的关系,或者只研究两者之一。我的研究课题在研究这两者之外还关注学科知识的可教性及其发展过程。在我设计的"概念研究"中,教师们集思广益,共同探究他们用于教学的数学知识。本文还囊括了一些原始数据来说明教师们在概念研究中的参与是如何逐步改变他们对于数学的认识和理解并实施到教学中的。 Most studies of teachers' disciplinary knowledge of mathematics locus on descriptions of its characteristics and/or demonstrations of its relationship to student learning. I describe a project that, in addition to these issues, is concerned with its teachability and the processes by which it is developed. I report on ' concept study' , a setting in which teachers pool expertise to interrogate and elaborate their knowledge of mathematics for teaching. I also inelude preliminary data on how participation in concept study appears to contribute to shifts in the ways that mathematics is seen, understood, and engaged within classroom settings.
出处 《全球教育展望》 CSSCI 北大核心 2011年第7期3-14,共12页 Global Education
关键词 概念研究 教师 学科知识 学科教学知识 concept study teachers disciplinary knowledge disciplinary knowledge for teaching
  • 相关文献

参考文献23

  • 1Ball, D. L. , & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach : knowing and using mathematics, In J. Boaler ( Ed. ), Multiple perspectives on the teaching and learning of mathematics (pp. 83 - 10d). Westport, CT: Ablex.
  • 2Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M., Tsai, Y. (2010). Teachers' mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47, 133 180.
  • 3Begle, E.G. (1979). Critical variables in mathematics education: findings from a survey of the empirical literature. Washington, DC : Mathenmtical Association of American and National Council of Teachers of Mathematics.
  • 4Brousseau, G. (1997). Theory of didactical situations in mathemat-ics: didactiques des mathematiques, 1970 1990. (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Trans. ). Dordrecht, NL: Kluwer.
  • 5Confrey, J. , Maloney, A. , Nguyen, K. , Mojica, G. , Myers, M. (2009). Equipartitioning/ splitting as a foundalion of rational number reasoning using learning trajectories. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (vot. 2, pp. 345 352). Thessaloniki, GR: PME.
  • 6Davis, B. (2008). Is 1 a prime number? Developing teacher knowledge through concept study. Mathematics Teaching In The Middle School, 14(2), pp. 86-91.
  • 7Davis, B. (1996). Teaching nmthematics: toward a sound alternative. New York : Garland.
  • 8Davis, B. , & Renert, M. (2009). Mathematics - for - teaching as shared dynamic participation. For the Learning of Mathematics, 29 (3), 37-43.
  • 9Davis, B. , & Simmt, E. (2003). Understanding learning systems: mathematics education and complexity science. Journal For Research In Mathematics Education, 34(2), 137 - 167.
  • 10Davis, B. , & Simmt, E. (2006). Mathematics - for - teaching.Educational Studies in Mathematics, 61 (3) , 293 319.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部