期刊文献+

基于粒子群算法的防空修正弹控制方法研究

Research on Control Method of Anti-aircraft Correction Ammunition Based on Particle Swarm Optimization
原文传递
导出
摘要 为了提高防空弹道修正弹拦截机动目标的能力,提出了一种弹载执行机构的控制方法.建立了防空弹道修正弹的质点弹道模型,根据弹道修正的基本原理,得到了脉冲控制的优化模型;针对脉冲控制的特点给出了脉冲点火控制策略;应用粒子群算法对脉冲控制指令进行了优化.通过引入脉冲能量消耗最小原则改进了适应度函数,搜索了控制指令的全局优化解.仿真结果表明,该方法使得防空弹药在拦截机动目标时具有较高的命中精度. In order to improve the ability of anti-aircraft trajectory correction ammunition to intercept maneuvering targets,a control method of missile-borne actuator was proposed.The particle trajectory model was established.According to the basic principle of trajectory correction,the optimal model of impulsive control was obtained.The ignition pulse control strategy was given according to the characteristics of impulse control.The particle swarm optimization(PSO) was applied to optimizing the impulsive control instructions.By introducing the minimum consumption principle of pulse energy,the fitness function was improved.The overall optimal solutions of control instructions were searched.Simulation results show that this control method can make anti-aircraft ammunition gain high hit-precision to intercept maneuvering target.
出处 《弹道学报》 EI CSCD 北大核心 2011年第2期57-61,共5页 Journal of Ballistics
基金 北京市教育委员会共建基金项目(XK100070532) 省部级重点基金项目(9140A17051010BQ0104)
关键词 弹道 粒子群算法 防空弹道修正弹 脉冲控制 trajectory particle swarm optimization anti-aircraft trajectory correction ammunition impulsive control
  • 相关文献

参考文献7

  • 1BIEGLER L T, GROSSMANN I E. Retrospective on optimization [J]. Computers and Chemical Engineering, 2004, 28 (8): 1 169 - 1 192.
  • 2BIANCHINI M, FANELLI S, GoRI M. Optimal algorithms for well conditioned nonlinear systems of equations[J]. IEEE Trans on Computers,2001,50(7):689-698.
  • 3蔡大用,白峰衫.现代科学计算[M].北京:科学出版社,2001.
  • 4KENNEDY J, EBERHART R. Particle swarm optimization [C]. Proc of IEEE Int Conf on Neural Networks. Piscataway, NJ:IEEE,1995:1 942-1 948.
  • 5PARSOPOULOS K E, VRAHATIS N. Recent approaches to global optimization problems through particles swarm optimization[J].Natural Computing, 2002,1 : 235- 306.
  • 6高尚,杨静宇.非线性整数规划的粒子群优化算法[J].微计算机应用,2007,28(2):126-130. 被引量:8
  • 7谭瑛,高慧敏,曾建潮.求解整数规划问题的微粒群算法[J].系统工程理论与实践,2004,24(5):126-129. 被引量:43

二级参考文献22

  • 1谭瑛,高慧敏,曾建潮.求解整数规划问题的微粒群算法[J].系统工程理论与实践,2004,24(5):126-129. 被引量:43
  • 2现代应用数学手册编委会.现代应用数学手册:运筹学与最优化理论卷[M].北京:清华大学出版社,1997..
  • 3Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarm[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii, 2001. 94-100.
  • 4Shi Yuhui, Eberhart R. Parameter selection in particle swarm optimization[A]. Proc of the 7th Annual Conf on Evolutionary Programming[C]. Washington DC,1998. 591-600.
  • 5Shi Yuhui, Eberhart R. Parameter selection in particle swarm optimization[A]. Proc of the 7th Annual Conf on Evolutionary Programming[C]. 1998.591-600.
  • 6Angeline PJ. Evolutionary optimization versus particle swarm optimization: Philosophy and performance difference[A]. Proc of the 7th Annual Conf on Evolutionary Programming[C]. Gemany:Springer,1998. 601-610.
  • 7Ray T, Liew K M. A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problem[A]. Proc IEEE Int Conf on Evolutionary Computation[C]. Seoul,2001. 75-80.
  • 8Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing 2002, 1:235-306.
  • 9Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks, 1995. 1942-1948.
  • 10Suganhan P N. Particle swarm optimizer with neighbourhood operator[A].Proc of the Congress on Evolutionary Computation[C]. Washington DC,1999. 1958-1962.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部