摘要
若有向图T满足条件:uv A(T)且存在一点w使得uw∈A(T),wv∈A(T)则d-(u)+d+(v)≥n,称图T满足G(n)条件.在本文中,我们讨论了如果T(p,q)二部竞赛图满足G(n)条件且强连通,则T(p,q)包含一条长至少为2 min{n+1,p,q}的圈,除非n为偶数且T(p,q)同构于一类图族B(k1,k2,k3,n/2),ki≥n/2,i=1,2,3,及特殊竞赛图的最长圈问题.
A digraph T is said to satisfy the condition G(n) if d-(u)+d+(v)≥n whenever uv is not an arc of T,and have a vertex w to uw and wv are two arc of T.In this paper an p×q bipartite tournament T satisfies the condition G(n) and strong was discussed,then T at least contains 2 min{n+1,p,q} cycles,unless T is even is omorphic to a sepcified family of graphs B(k1,k2,k3,n/2),ki≥n/2,i=1,2,3.
出处
《甘肃联合大学学报(自然科学版)》
2011年第4期28-30,共3页
Journal of Gansu Lianhe University :Natural Sciences