期刊文献+

“自由度”在基于Agent的配网重构算法中的应用

Application of "Freeness" in Algorithm of Distribution Network Reconfiguration based on Agent
下载PDF
导出
摘要 配网重构的实质是求解大规模、多约束条件的非线性组合优化问题。除了经典方法以外,使用基于人工智能原理的遗传算法求解这类问题在近年来受到了广泛的关注。但因配电网辐射状运行条件的限制,简单遗传算法在求解该问题时容易陷入无效解过多、效率低下的困境,而采用基于Agent的改进遗传算法可以有效解决这一问题,但还有一些地方需要改进。针对这一问题,在已有算法基础上引入"自由度"概念,可以明显增加算法的效率和全局收敛性。通过采用IEEE14节点系统作为算例,具体分析了不同的"自由度"取值对基于Agent的改进遗传算法性能的影响并分析了其原因。相关结论表明所引入"自由度"概念的必要性和有效性。 Distribution network reconfiguration is in essence an issue of solving large-scale nonlinear combinatorial optimization with multi-constraints.Apart from applied classic methods,genetic algorithm based on artificial intelligence principle in solving this issue is widely concerned recently.But limited by the radialized mode of operation in distribution network,simple genetic algorithm becomes inefficient at solving this problem.Modified genetic algorithm based on Agent can solve this problem effectively,but some measures are needed to be improved.This paper introduces a concept named "Freeness" applying on the existing methods to improve their efficiency and global convergence.Taking IEEE-14 system as an example,this paper analyzed the effect of different values of Freeness on the performance of the modified genetic algorithm based on Agent.Conclusions prove that bringing the concept of Freeness is necessary and feasible.
作者 孙科 李如宏
机构地区 德阳电业局
出处 《华中电力》 2011年第3期35-39,共5页 Central China Electric Power
关键词 配网重构 基于Agent的遗传算法 自由度 distribution network reconfiguration genetic algorithm based on Agent freeness
  • 相关文献

参考文献9

  • 1Qin Zhuo, Dariush Shirmohammadi. Distribution feeder reconfiguration for service restoration and load balancing[J]. IEEE Trans. on Power System, 1997, 12(2): 724-729.
  • 2T. P. Wanger, A. Y. Chikhani, R. Hacham. Feeder reconfiguration for loss reduction: an application of distribution automation[J]. IEEE Trans. on Power Delivery, 1991, 6(4): 1922-1933.
  • 3H. D. Chiang. Optimal network reconfiguration in distribution systems Part-1: a new formulation and a solution methodology[J]. IEEE Trans. on Power Delivery, 1990, 5(4): 1902-19139.
  • 4H. D. Chiang. Optimal network reconfiguration in distribution systems Part-2: a new formulation and a solution methodology[J]. IEEE Trans. on Power Deliver, 1990, 5(3): 1568-1574.
  • 5Koichi Nara. Implementation of genetic algorithm for distribution system loss minimum reconfiguration[J]. IEEE Trans. on Power Systems , 1992, 7 (3): 1047-1051.
  • 6刘勇,康立山,陈毓屏.非数值并行算法一遗传算法.北京:科学出版社[M].1993.
  • 7宋平,张焰,蓝毓俊,陈芯蕊.改进遗传算法在配电网重构中的应用[J].上海交通大学学报,1999,33(4):488-491. 被引量:11
  • 8张弘鹏,余贻鑫.基于Agent行为和范例学习的遗传算法在城网规划中的应用[J].电力系统自动化,2003,27(3):45-49. 被引量:7
  • 9Ching-Tzong Su, Chu-Sheng Lee. Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution[J]. IEEE Trans. on Power Delivery, 2003, 18(3): 1022-1027.

二级参考文献14

  • 1[1]Lakervi E, Nurmi M. Present Status in Applying Mathematical Planning Methods in AM/FM-GIS System. In: IEE Conference Publication No 438 International Conference on Electricity Distribution-CIRED. Birmingham(UK): 1997. 2~5
  • 2[2]Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading (Mass): Addison-Wesley Pub Co, 1989
  • 3[3]Thomas Ba¨ck, Hans-Paul Schwefel. An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation, 1993, 1(1): 1~23
  • 4[4]Ramirez-Rosado I J, Bernal-Agustin J L.Genetic Algorithms Applied to the Design of Large Power Distribution Systems.IEEE Trans on Power Systems, 1998, 13(2): 696~703
  • 5[5]Miranda V, Ranito J V, Proena L M. Genetic Algorithms in Optimal Multistage Distribution Network Planning. IEEE Trans on Power Systems, 1994, 9(4): 1927~1933
  • 6[6]Vincent Regis, Horling Bryan, Lesser Victor. Experiences in Simulating Multi-agent Systems Using TAEMS. In: The Fourth International Conference on Multi-agent Systems (ICMAS 2000). 2000
  • 7[7]Pierre Dillenbourg, John A Self. A Computational Approach to Socially Distributed Cognition. European Journal of Psychology of Education, 1992, 7(4): 252~373
  • 8[8]Rosario Conte. Intelligent Social Learning. In: The Proceedings of the AISB'00 Sympoisum on Starting from Society--The Application of Social Analogies to Computational Systems. Birmingham (UK): 2000. 1~13
  • 9[9]Sébastien Picault, Anne Collinot. Designing Social Cognition Models for Multi-agent Systems Through Simulating Primate Societies. In: Proceedings of ICMAS'98 (3rd International Conference on Multi-agent Systems). 1998
  • 10[10]Samuel Landau, Sébastien Picault, Alexis Drogoul. ATNoSFERES: A Model for Evolutive Agent Behaviors. In: Proceedings of AISB'01 Symposium on Adaptive Agents and Multi-agent Systems. 2001. 95~99

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部