期刊文献+

锥度量空间中两对非相容映象的一个新的公共不动点定理 被引量:2

A new common fixed point theorem for two pairs of noncompatible mappings in cone metric spaces
原文传递
导出
摘要 自锥度量空间的概念被提出以来,已经有数位学者对其结构和性质进行了探讨.研究了锥度量空间中非相容映象对,并利用非相容映象对的性质和压缩条件得到一类映象的公共不动点定理,其结果推广了相关文献的结果. Since the notation of cone metric spaces was taised,several authors have studied its constructions and properties.The non compatible conditions of mapping was studies in the cone metric spaces.By making use of the noncompatible and contractive conditions,we establish common fixed piont theorems and extend the corresponding results in other references.
作者 张军贺 谷峰
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期378-382,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(11071169) 浙江省自然科学基金资助项目(Y6110287) 杭州师范大学研究生教改基金资助项目
关键词 锥度量空间 非相容映象对 (Ag)型R-弱交换映象 公共不动点 cone metric spaces noncompatible mapping pairs (Ag) type R-weak commutativity mapping common fixed point
  • 相关文献

参考文献18

  • 1HUANG L G, ZHANG X. Cone metric spaces and fixed point theorems of contractive mappings [ J ]. Math Anal Appl, 2007, 322(2) :1 468-1 476.
  • 2王云杰,朱江.锥距离空间中两个映射的公共不动点定理(英文)[J].徐州师范大学学报(自然科学版),2010,28(3):40-43. 被引量:3
  • 3袁清,高建军,王延伟.锥度量空间中广义压缩映象及映象对的不动点定理[J].山东大学学报(理学版),2008,43(5):82-86. 被引量:5
  • 4ABBAS M ,JUNGCK G. Common fixed piont results of nonmmuting mappings without continuity in cone metric spaces [ J ].Math Anal Appl,2008,341 ( 1 ) :416-420.
  • 5RADENOVIC S. Common fixed points under contractive conditions in cone metric spaces [ J ]. Comput Math Appl,2009,58 (6) :1 273-1 278.
  • 6REZAPOUR Sh, HAMLARANI R. Some notes on the paper" Cone metric spaces and fixed point theorems of contractive mappings"[ J]. Math Anal Appl,2008,345(2) :719-724.
  • 7KADELBURG Z,RADENOVIC S,RADENOVIC V. Remarks on quasi - contraction on a cone metric space [ J ]. Appl Math Lett,2009,22 (11 ) :1 674-1 679.
  • 8CHEN Chi-ming, CHANG Tong-hui. Common fixed piont theorems for a weaker Meir- Keeler type function in cone metric spaces [ J ]. Appl Math Lett,2010,23 ( 11 ) : 1 336-1 341.
  • 9朱奋秀,胡新启.非相容映象的公共不动点定理[J].数学杂志,2010,30(3):533-536. 被引量:2
  • 10ILIC D, RADENOVIC V. Common fixed points for maps on cone metric space [ J ]. Math Anal Appl,2008,341 (2) :876-882.

二级参考文献20

  • 1陈仕洲.度量空间中弱相容映射的几个公共不动点定理[J].长春师范学院学报(自然科学版),2006,25(1):25-27. 被引量:4
  • 2Pant R P.Discontinuity and Fixed point[J].J.Math.Anal.Appl.,1999,240(1):284-289.
  • 3Pant R P.Common Fixed point theorems for contractive map[J].J.Math.Anal.Appl.,1998,226(1):251-258.
  • 4Pant R P.Common Fixed point of Lipschitz type mappingpaixs[J].J.Math.Anal.Appl.,1999,240(1):280-283.
  • 5Jungck G.Compatible mappings and common fixedpoints[J].Internat J.Math.Sci.,1986,9(4):771-779.
  • 6Pathak H K,Cho Y J,Kang S M.Remarks on R-weaklycommuting mapping and common fixed point theorems[J].J.Bull Korean Math.Soc.,1997,34(2):247-257.
  • 7Huang Longguang,Zhang Xian. Cone metric spaces and fixed point theorems of contractive mappings[J]. J Math Anal Appl, 2007,332(2) : 1468.
  • 8Abbas M,Jungck G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces [J]. J Math Anal Appl,2008,341(1):416.
  • 9Radenovic S. Common fixed points under contractive conditions in cone metric spaces[J]. Comput & Math Appl,2009,58 (6) :1273.
  • 10Jungck G. Commuting mappings and fixed points[J]. Amer Math Mon, 1976,83:261.

共引文献9

同被引文献15

  • 1VERMA R U.Generalized system for relaxed cocoercive variational inequalities and projection methods[J].J Optim Theory Appl,2004,121(1):203-210.
  • 2NOOR M A.Iterative schemes for nonconvex variational inequalities[J].J Optim Theory Appl,2004,121:385-395.
  • 3PANG L P,SHEN J,SONG H S.A modified predictor-corrector algorithm for solving nonconvex generalized variational ine- qualities[J].Comput Math Appl,2007,54:319-325.
  • 4CLARKE F H,LEDYAEV Y S,WOLENSKI P R.Nonsmooth analysis and control theory[M].Berlin:Springer,1998.
  • 5POLIQUIN R A,ROCKAFELLAR R T,THIBAULT L.Local differentiability of distance functions[J].Trans Am Math Soc,2000,352:5231- 5249.
  • 6NOOR M A.Projection methods for nonconvex variational inequalities[J].Optim Lett,2009,3:411-418.
  • 7NOOR M A.Some iterative methods for nonconvex variational inequalities[J].Comput Math Model,2010,21(1):97-108.
  • 8NOOR M A,HUANG Z.Wiener-Hopf equation techniquue for variational inequalities and nonexpansive mappings[J].Appl Math Comput,2007,191:504-510.
  • 9NOOR M A,NOOR K I.Projection algorithms for solving system of general variational inequalities[J].Nonl Anal,2009,70:2700 -2706.
  • 10WEN Dao-jun.Projection methods for a generalized system of nonconvex variational inequalities with different nonlinear oper-ators[J].Nonl Anal,2010,73:2292-2297.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部