摘要
针对化工过程中广泛使用的连续搅拌反应釜(CSTR),提出一种基于神经网络的模型预测控制策略,采用分段最小二乘支持向量机辨识Hammerstein-Wiener模型系数的方法,在此基础上建立线性自回归模式(ARX)结构和高斯径向基神经网络串联的非线性预测控制器。利用BP神经网络训练预测控制输入序列和拟牛顿算法求解非线性预测控制律,从而实现一种基于支持向量机Hammerstein-Wiener辨识模型的非线性神经网络预测控制算法。对CSTR的仿真结果表明,该方法能够更有效地跟踪控制反应物浓度。
A model predictive control strategy based on neural network is presented for a continuous stirred tank reactor(CSTR).A segmentation method was adopted to identify Hammerstein-Wiener model coefficient by least squares support vector machines and then to construct a nonlinear predictive controller which was by a linear optimal component and radial basis function neural networks in series.A nonlinear predictive control algorithm based on least support vector machines Hammerstein-Wiener model was realized by using BP neural network to train predictive input sequences and to solve nonlinear predictive control rules by Quasi-Newton method.The simulation results of CSTR illustrate that this approach is effective tracking and controlling product concentration.
出处
《化工学报》
EI
CAS
CSCD
北大核心
2011年第8期2275-2280,共6页
CIESC Journal
基金
国家自然科学基金项目(61074020)~~