期刊文献+

基于Hammerstein-Wiener模型的连续搅拌反应釜神经网络预测控制 被引量:11

Neural network predictive control of continuous stirred-tank reactor based on Hammerstein-Wiener model
下载PDF
导出
摘要 针对化工过程中广泛使用的连续搅拌反应釜(CSTR),提出一种基于神经网络的模型预测控制策略,采用分段最小二乘支持向量机辨识Hammerstein-Wiener模型系数的方法,在此基础上建立线性自回归模式(ARX)结构和高斯径向基神经网络串联的非线性预测控制器。利用BP神经网络训练预测控制输入序列和拟牛顿算法求解非线性预测控制律,从而实现一种基于支持向量机Hammerstein-Wiener辨识模型的非线性神经网络预测控制算法。对CSTR的仿真结果表明,该方法能够更有效地跟踪控制反应物浓度。 A model predictive control strategy based on neural network is presented for a continuous stirred tank reactor(CSTR).A segmentation method was adopted to identify Hammerstein-Wiener model coefficient by least squares support vector machines and then to construct a nonlinear predictive controller which was by a linear optimal component and radial basis function neural networks in series.A nonlinear predictive control algorithm based on least support vector machines Hammerstein-Wiener model was realized by using BP neural network to train predictive input sequences and to solve nonlinear predictive control rules by Quasi-Newton method.The simulation results of CSTR illustrate that this approach is effective tracking and controlling product concentration.
作者 满红 邵诚
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第8期2275-2280,共6页 CIESC Journal
基金 国家自然科学基金项目(61074020)~~
关键词 HAMMERSTEIN-WIENER模型 最小二乘支持向量机 BP神经网络 非线性预测控制 Hammerstein-Wiener model least squares support vector machines BP neural networks nonlinear model predictive control
  • 相关文献

参考文献18

  • 1Rouhani R, Mehra R K. Model algorithm control (MAC), basic theoretical properties [J]. Automatica, 1982, 18 (4) : 401-414.
  • 2Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control (I), The basic algorithm [J]. Automatica, 1987, 23 (2): 137-148.
  • 3WangQingchao(王庆超),ZhangJianzhong(张健中).Nonlinear predictive control for continuous stirred-tank reactor using Hammerstein model [J]. Journal of Nanjing University of Science and Technology (南京理工大学学报),2010,34(5):618-623.
  • 4Fruzzetti K P, Palazoglu A, McDonald K A. Nonlinear model predictive control using Hammerstein models[J]. Journal of ProcessControl, 1997, 7 (1): 31-41.
  • 5Francisco J. Predictive control of solid oxide fuel cells using fuzzy Hammerstein models [J]. Journal of Power Sources, 2006, 158 (1): 245 -253.
  • 6Harnischmacher G, Marquardt W. Nonlinear model predictive control of multivariable processes using block structured models [J]. Control Engineering Practice, 2007, 15 (10):1238- 1256.
  • 7朱学峰,Sebo.,DE.采用Hammerstein模型的非线性预测控制[J].控制理论与应用,1994,11(5):564-575. 被引量:22
  • 8Cervantes A L, Agamennoni O E, Figueroa J L. A nonlinear model predictive control system based on Wiener piece wise linear models [J]. Journal of Process Control, 2003, 13 (7): 655-666.
  • 9Arefi M M, Montazeria A, Poshtana J, et al. Wiener neural identification and predictive control of a more realistic plug flow tubular reactor [J ]. Chemical Engineering Journal, 2007, 138 (1/2/3): 274-282.
  • 10Doyle F J, Ogunnaike B A, Pearson R K. Nonlinear model based control using second order Volterra models [J]. Automatica, 1995, 31 (5): 697-714.

二级参考文献7

共引文献42

同被引文献117

引证文献11

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部