期刊文献+

一种多基阵机动目标被动跟踪算法 被引量:4

An algorithm for passive tracking of maneuvering target based on multiple arrays
下载PDF
导出
摘要 由多部声纳基阵获取的方位信息对水中机动目标的跟踪实质上是一个非线性状态估计问题,文中首先依据各基阵的方位信息,采用最小二乘法得到目标位置在各采样时刻的初步估计,然后将其作为测量值用于交互多模型算法(IMM)并结合线性卡尔曼滤波(KF)得到目标运动速度和轨迹,避免了应用非线性估计算法直接进行多个方位数据融合过程中存在的各种问题。仿真结果表明这一算法简便,与双基阵纯方位机动目标被动跟踪相比具有较快的收敛速度和较高的跟踪精度。 Passive tracking of maneuvering target in water based on bearings of multiple sonar arrays is a nonlinear state estimation issue. In this paper, the preliminary estimation of target position is acquired by the least square method based on bearing data acquired by arrays firstly, then the estimated position data are applied as measured values to Interactive Multiple Models (IMM) algorithm with Kalman Filter (KF), finally the velocity as well as track of target can be obtained, avoiding the problems brought by applying nonlinear estimation algorithms for data fusion directly. The result of simulation shows that the proposed algorithm is simple, and the speed of convergence is faster, and the precision of tracking is superior in comparing to passive tracking of maneuvering target based on bearings of two sonar arrays.
出处 《应用声学》 CSCD 北大核心 2011年第4期282-287,共6页 Journal of Applied Acoustics
关键词 多基阵 机动目标被动跟踪 最小二乘法 交互多模型算法 Multiple arrays, Tracking of maneuvering target, Least square method, IMM
  • 相关文献

参考文献7

二级参考文献32

  • 1贾宇岗,梁彦,潘泉,张洪才,戴冠中.交互式多模型算法过渡过程的仿真分析[J].系统仿真学报,2002,14(1):16-18. 被引量:13
  • 2芮国胜,管旭军.一种机动目标无源定位的新方法[J].宇航学报,2005,26(B10):121-125. 被引量:5
  • 3董志荣.舰艇指控系统的理论基础[M].北京:国防工业出版社,1995..
  • 4关欣.[D].海军航空工程学院,2002.
  • 5Blom H A P, Bar-shalom Y. The interacting multiple-model algorithm forsystems with Markovian switching coefficients [J]. IEEE Transactions on Automatic Control, 1987, 33(8) :780-783.
  • 6Bar-shalom Y. Tracking a maneuvering target using input estimation versus interacting multiple model algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25 (2) : 296-300.
  • 7Li X R, Bar-shalom Y. Multiple model estimation with variable structure[J]. IEEE Trans AC, 1996, 41 (4) : 478-493.
  • 8Aidala V J. Kalman filter behavior in bearings-only tracking applications [J]. IEEE Transaction on AES, 1979, 15(1):29-39.
  • 9Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3) :401-422.
  • 10Wan E A, Merwe R. The unscented Kalman filter for nonlinear estimation [C]//Proceedings of International Symposium on Adaptive Systems for Signal Processing, Communications and Control. Alberta, Canada, 2000: 153-158.

共引文献126

同被引文献21

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部