期刊文献+

基于GQPSO算法的网络入侵特征选择方法 被引量:18

Feature Selection Method for Network Intrusion Based on GQPSO Algorithm
下载PDF
导出
摘要 高维网络数据中的无关属性和冗余属性容易使分类算法的网络入侵检测速度变慢、检测率降低。为此,提出一种基于遗传量子粒子群优化(GQPSO)算法的网络入侵特征选择方法,该方法将遗传算法中的选择变异策略与QPSO有机结合形成GQPSO算法,并以网络数据属性之间的归一化互信息量作为该算法适应度函数,指导其对网络数据的属性约简,实现网络入侵特征子集的优化选择。在KDDCUP1999数据集上进行仿真实验,结果表明,与QPSO算法、PSO算法相比,该方法能更有效地精简网络数据特征,提高分类算法的网络入侵检测速度及检测率。 Aiming at problem that independent and redundant attributes of high dimensional network data cause classification algorithms' slow detection speed and low detection rate in network intrusion detection, a feature selection approach for network intrusion based on Genetic Quantum Particle Swarm Optimization(GQPSO) algorithm is proposed. The approach organically combines selection and variation of genetic algorithm with QPSO to form GQPSO algorithm, and normalizes mutual information between attributes of network data is defined as the algorithm's fitness function, which guides its reduction of network data attributes to realize optimal selection of network intrusion feature sub-set. Simulation experiment is done in KDDCUP1999. Result shows that compared with QPSO and PSO algorithms, the approach is more effective for feature selection of network data and improvement of network intrusion detection speed and detection rate of classification algorithms.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第14期103-105,共3页 Computer Engineering
基金 陕西省自然科学基金资助项目(2009JM7007)
关键词 GQPSO算法 归一化互信息 适应度函数 特征选择 网络入侵检测 Genetic Quantum Particle Swarm Optimization(GQPSO) algorithm normalized mutual information fitness function featureselection network intrusion detection
  • 相关文献

参考文献7

二级参考文献22

  • 1谷雨,夏虹,张天军,何磊.基于决策规则格的入侵检测[J].微电子学与计算机,2005,22(3):53-56. 被引量:2
  • 2乔立岩,彭喜元,马云彤.基于遗传算法和支持向量机的特征子集选择方法[J].电子测量与仪器学报,2006,20(1):1-5. 被引量:24
  • 3陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 4张威,魏冬生.基于Adaboost与支持向量机的人脸特征提取[J].微电子学与计算机,2007,24(5):69-72. 被引量:9
  • 5Cortes C, Vapnik V. Support vector networks [J ]. Machine Learning, 1995, 20(3) :273 - 297.
  • 6Huang C, Lee Y, Lin D, et al. Model selection for support vector machines via uniform design [ J ]. Computational Statistics & Data Analysis, 2007,52(1) : 335 - 346.
  • 7KDD99[EB/OL]. [2009 - 01 - 10]. http://kdd. ics. uci. edu/databases/kddcup99/kddcup99, html.
  • 8Wang Yujia, Yang Yupu. Particle Swarm Optimization with Preference Order Ranking for Multi-objective Optimization[J]. Information Sciences, 2009, 179(12): 1944-1959.
  • 9Kiranyaz S, Ince T, Yildirim A, et al. Evolutionary Artificial Neural Networks by Multi-dimensional Particle Swarm Optimization[J]. Neural Networks, 2009, 22(10): 1448-1462.
  • 10Marinakis Y, Marinaki M. A Hybrid Multi-swarm Particle Swarm Optimization Algorithm for the Probabilistic Traveling Salesman Problem[J]. Computers & Operations Research, 2010, 37(3): 432-442.

共引文献52

同被引文献99

引证文献18

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部