摘要
针对到达时间差(TDOA)定位估计中的非线性最优化问题,在鱼群算法中引入文化机制设计基于实数编码的文化鱼群算法,将Chan算法的解作为文化鱼群的一个个体初始位置,并利用文化鱼群算法搜索TDOA定位的最优坐标。仿真结果表明,该技术性能稳定,在鱼群规模较小的情况下能快速鲁棒地找到逼近全局最优点的解,并且具有较快的搜索速度和较高的搜索精度。
Aiming at the nonlinear optimization problem of Time Difference of Arrival(TDOA) location, this paper proposes the Cultural Fish Swarm(CFS) algorithm of real coding which introduces cultural operator to artificial fish swarm algorithm. By adding the solution of Chan algorithm into initial population of CFS algorithm, the CFS method can search the optimal coordinates of TDOA location fast. Simulation results show that the technology has stable performance, if the population size is small, the technology is robust and can find the coordinates of optimization, and it has higher search speed and search precision.
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第14期137-139,共3页
Computer Engineering
基金
黑龙江省科技攻关计划基金资助项目(GZ08A101)
中央高校基本科研业务费专项基金资助项目(HEUCF100801)
关键词
到达时间差
无线定位
文化鱼群算法
最大似然估计
CHAN算法
Time Difference of Arrival(TDOA)
wireless location
Cultural Fish Swarm(CFS) algorithm
maximum likelihood estimation
Chanalgorithm