期刊文献+

基于文化鱼群算法的到达时间差定位技术 被引量:4

Time Difference of Arrival Location Technology Based on Cultural Fish Swarm Algorithm
下载PDF
导出
摘要 针对到达时间差(TDOA)定位估计中的非线性最优化问题,在鱼群算法中引入文化机制设计基于实数编码的文化鱼群算法,将Chan算法的解作为文化鱼群的一个个体初始位置,并利用文化鱼群算法搜索TDOA定位的最优坐标。仿真结果表明,该技术性能稳定,在鱼群规模较小的情况下能快速鲁棒地找到逼近全局最优点的解,并且具有较快的搜索速度和较高的搜索精度。 Aiming at the nonlinear optimization problem of Time Difference of Arrival(TDOA) location, this paper proposes the Cultural Fish Swarm(CFS) algorithm of real coding which introduces cultural operator to artificial fish swarm algorithm. By adding the solution of Chan algorithm into initial population of CFS algorithm, the CFS method can search the optimal coordinates of TDOA location fast. Simulation results show that the technology has stable performance, if the population size is small, the technology is robust and can find the coordinates of optimization, and it has higher search speed and search precision.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第14期137-139,共3页 Computer Engineering
基金 黑龙江省科技攻关计划基金资助项目(GZ08A101) 中央高校基本科研业务费专项基金资助项目(HEUCF100801)
关键词 到达时间差 无线定位 文化鱼群算法 最大似然估计 CHAN算法 Time Difference of Arrival(TDOA) wireless location Cultural Fish Swarm(CFS) algorithm maximum likelihood estimation Chanalgorithm
  • 相关文献

参考文献7

二级参考文献24

  • 1Chan Y T, Ho K C. A Simple and Efficient Estimator for Hyperbolic Location[J]. IEEE Trans. on Signal Processing, 1994, 42(8): 1905-1915.
  • 2Reynolds R G. An Introduction to Cultural Algorithms[C]//Proc. of the 3rd Annual Conf. on Evolutionary Programming. [S. l.]: World Scientific Publishing, 1994.
  • 3范平志,邓平,刘林.蜂窝网无线定位[M].北京:科学出版社,1995.
  • 4Becerra R L, Coello C A. Cultured Differential Evolution for Constrained Optimization[J]. Computer Method in Applied Mechanics and Engineering, 2006, 195(33): 4303-4322.
  • 5Saleem S. Knowledge-based Solution to Dynamic Optimization Problems Using Cultural Algorithms[D]. Detroit, USA: Wayne State University, 2001.
  • 6Reynolds R G, Chung C. Knowledge-based Self-adaption in Evolutionnary Programming Using Cultural Algorithm[C]//Proc. of IEEE International Conference on Evolutionary Computation. NY, USA: IEEE Press, 1997.
  • 7Caffery James J. Wireless Location CDMA Cellular Radio Sysems[M].Kluwer Academic Publishers, 1999.
  • 8Abel J S, Smith J O. Source Range and Depth Estimation from Muhipath Range Difference Measurements[J]. IEEE Trans. Acoust. Speech Signal Processing, 1989,37:1157 - 1165.
  • 9Fang B T. Simple Solutions for Hyperbolic and Related Position Fixes[J]. IEEE Trans. Aeroap. Eletron. Syst., 1990,26:748-753.
  • 10Schau H C, Robinson A Z. Passive Sottrce Localization Employing Intertrans. Acoust., Speech, Signed Processing, 1987, ASSP-35: 1223-1225.

共引文献106

同被引文献46

  • 1胡高歌,刘逸涵,高社生,杨一.改进的强跟踪UKF算法及其在INS/GPS组合导航中的应用[J].中国惯性技术学报,2014,12(5):634-639. 被引量:27
  • 2李静,刘琚.用卡尔曼滤波器消除TOA中NLOS误差的三种方法[J].通信学报,2005,26(1):130-135. 被引量:39
  • 3陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 4POLI R, KENNEDY J, BLACWELL T. Particle swarm optimization[J]. Swarm Intell, 2007,1(1) : 33-57.
  • 5SHI Y,EHERHART R. A modified particle swarm optimizer[C]//Proc of IEEE World Congress on Computational Intelligence. Indian-apolis :Indiana University, 1998 : 69-73.
  • 6EBERHART R C,KENNEDY J. A . new optimizer using particleswarm theory[C]//Proc of the 6th International Symposium on MicroMachine and Human Science. 1995 :39-43.
  • 7FOY H W. Position location solutions by Taylor-series estimation [J].IEEE Trans on Aerospace and Electronic Systems, 1976,AES-12(2):187-194.
  • 8江铭言,袁东风.人工鱼群算法及其应用[M].北京.科学出版社,2012:20-95.
  • 9WANG Cui-ru,ZHOU Chun-lei,MA Jian-wei. An improvedartificial fish-swarm algorithm and its application in feed-forward neural networks [C]//2005 International Conferenceon Machine Learning and Cybernetics, 2005:2890-2894.
  • 10Tian J,Liu J C An improved artificial fish swarm algorithmfor multi-robot task scheduling [C]//proceeding of the 5thInternational Conference on Natural Computation ,2009:129-130.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部