期刊文献+

基于粒子群优化算法的模拟滤波器设计 被引量:3

Design of Analog Filter Based on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 采用传统的网络综合法设计滤波器存在带宽不精确及阻带衰减过小的问题,为此,提出一种基于粒子群优化算法的无源模拟滤波器优化设计方法。在网络综合法设计的滤波器电路基础上,利用粒子群优化算法对滤波器的整个参数空间进行高效并行搜索直到获得最优的参数值。实例表明,采用该方法设计的滤波器带宽更加准确,且具有更加陡峭的阻带衰减。 As for the problem of the filter’s bandwidth imprecision and stop-band attenuation too small,a passive analog filter optimization design method is proposed based on the Particle Swarm Optimization(PSO) algorithm.The filter is designed by the network synthesis design method,and it optimizes the circuit’s parameters in the whole parameters space effectively and globally by PSO until gain the best parameters.This method can improve the filter’s bandwidth imprecision and the high stop-band suppression
出处 《计算机工程》 CAS CSCD 北大核心 2011年第13期246-247,261,共3页 Computer Engineering
基金 河北省教育厅科学研究基金资助项目(Z2006439)
关键词 滤波器 幅频 粒子群优化 网络综合 优化算法 filter amplitude-frequency Particle Swarm Optimization(PSO) network synthesis optimization algorithm
  • 相关文献

参考文献6

二级参考文献20

  • 1王大寿,赵涛.LC滤波器的小型化制作与生产[J].大连海运学院学报,1994,20(4):61-67. 被引量:7
  • 2刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 3乔立岩,彭喜元,彭宇.基于微粒群算法和支持向量机的特征子集选择方法[J].电子学报,2006,34(3):496-498. 被引量:25
  • 4郑春红,焦李成,丁爱玲.基于启发式遗传算法的SVM模型自动选择[J].控制理论与应用,2006,23(2):187-192. 被引量:18
  • 5Dong Y L, Xia Z H, Xia Z Q. A two-level approach to choose the cost parameter in support vector machines [J]. Expert Systems with Applications, 2008, 34(2): 1366-1370.
  • 6Ayat N E, Cheriet M, Suen C Y. Automatic model selection for the optimization of SVM kernels [J]. Pattern Recognition, 2005, 38(10) : 1733-1745.
  • 7Avci E. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM [J]. Expert Systems with Applications, 2009, 36(2): 1391-1402.
  • 8Keersthi S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J]. IEEE Trans on Neural Networks, 2002, 13(5) : 1225-1229.
  • 9Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proc IEEE Conf on Neural Networks. Perth:Piscataway, 1995, 4: 1942-1948.
  • 10Clerc M, Kennedy J. The particle swarm explosion, stability, and convergence in a multidimensional complex space [ J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.

共引文献54

同被引文献29

  • 1孙淑琴,林君,王应吉.中心频率可调节的低频带通滤波器设计与实现[J].电子测量与仪器学报,2006,20(6):59-63. 被引量:14
  • 2崔红梅,朱庆保.微粒群算法的参数选择及收敛性分析[J].计算机工程与应用,2007,43(23):89-91. 被引量:33
  • 3甘本拔,吴万春.现代微波滤波器的结构与设计[M].北京:科学出版社,1974:13—14.
  • 4徐菁婧,朱晓维.梳状微带线电调带通滤波器[C]//全国第十二届微波集成电路与移动通信学术会议.中国,北京.2008:131-134.
  • 5许昌盛,周宇松,周晨阳.一种电调谐带通滤波器的仿真与设计[C]//全国微波毫米波会议论文集.中国,宁波.2007:797-800.
  • 6KENNEDY J, EBERHART R. Particle swarm optimization[ C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995,4:1942 - 1948.
  • 7KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algo- rithm[ J]. Journal of Global Optimization, 2007, 39(3) : 459 - 171.
  • 8BAO L, ZENG J C. Comparison and analysis of the selection in arti- ficial bee colony algorithm [ C]//Proceeding of the 9th International Conference on Hybrid Intelligent Systems. Washington, DC: IEEEComputer Society, 2009:411 - 416.
  • 9LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of muhimo- dal functions[ J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3) :281 -295.
  • 10SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem defi- nitions and evaluation criteria for the CEC2005 special session on realparameter optimization, KanGAL Report Number 2005005 [ R/ OL]. [2012 - 10 - 01]. http://bschw, googlecode, com/svn-his- tory/r599/tmnk/EvalCompu/Tech-Report-May-30-05, pdf.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部