期刊文献+

改进的小波神经网络算法对变流器的故障诊断方法 被引量:4

Fault diagnostic method for power converter based on wavelet neural network with improved algorithm
下载PDF
导出
摘要 变流器是双馈风力发电系统中的枢纽设备,其运行可靠性直接关系到发电系统的安全与稳定。针对基于递推最小二乘(RLS)算法的离散小波神经网络(DWNN)存在收敛速度慢、收敛精度不高、搜索局部极小等不足,以变流器的电流为分析对象,提出一种采用变加权和变学习率改进算法的小波神经网络的变流器故障诊断方法。选择变流器电流作为离散小波神经网络训练及故障识别样本,对训练过程和仿真结果进行对比分析。实验结果表明:较之RLS算法,改进的小波神经网络故障诊断方法在故障识别准确率和收敛时间方面表现更优。 As one of the core equipments in doubly-fed induction wind power generation system,the operation reliability of power converters seriously influences the safety and stability of power generation system.Since some flaws exist in Wavelet Neural Network(WNN) based on Recursive Least Square(RLS) algorithm such as low convergence precision and rate,and searching space possessing local minima and oscillation.The authors proposed a modified algorithm for fault detection of diagnostic power converters,in which variable weight and alter learning coefficient were employed to resolve above problems.After the modified WNN was trained and the faults were recognized from practical current data,comparison and analysis were carried out in simulation.The experimental results demonstrate that the modified algorithm can provide higher diagnostic precision and require less convergence time than the RLS algorithm.
出处 《计算机应用》 CSCD 北大核心 2011年第8期2143-2145,共3页 journal of Computer Applications
关键词 变流器 故障诊断 离散小波神经网络 递推最小二乘法 变加权 变学习率 converter fault detection Discrete Wavelet Neural Network(DWNN) Recursive Least Square(RLS) algorithm variable weight alter-learning rate
  • 相关文献

参考文献9

  • 1KARKI R, HU P, BILLINTON R. A simplified wind power genera- tion model for reliability evaluation [ J]. IEEE Transactions on Ener- gy Conversion, 2006, 21(2): 533-540.
  • 2LIU B. Selection of wavelet packet basis for rotate machinery fault diagnosis [ J]. Journal of Sound and Vibration, 2005, 284(3/4/5) : 567 - 582.
  • 3MALHI A, GAO R X. PCA-based feature selection scheme for ma- chine defect classification [ J]. IEEE Transactions on Instrumenta- tion and Measurement, 2004, 53(6) : 1517 - 1525.
  • 4XIE LI, YANG HUIZHONG, DING FENG. Filtering based recur- sive least squares identification for non-uniformly sampled systems [ C]//2010 Chinese Control and Decision Conference. Washington, DC: IEEE Computer Society, 2010:1123 - 1128.
  • 5CAMPI M C. Exponentially weighted least squares identification of time-varying systems with white disturbances [ J]. IEEE Transac- tions on Signal Processing, 2004, 42( 11): 2906 -2914.
  • 6陈涵,刘会金,李大路,代静.可变遗忘因子递推最小二乘法对时变参数测量[J].高电压技术,2008,34(7):1474-1477. 被引量:26
  • 7UMAPATHY K, KRISHNAN S. Modified local discriminate bases algorithm and its application in analysis of human knee joint vibra- finn signals [ J]. IEEE Transactions on Biomedical Engineering, 2005, 53(3): 517-523.
  • 8UMAPATHY K, KRISHNAN S. Audio signal feature extraction and classification using local discriminate bases [ J]. IEEE Transactions on Audio, Speech Language Processing, 21307, 15(4): 1236-1246.
  • 9DAUBECHIES I. The wavelet transform time-frequency localization and signal analysis [ J]. IEEE Transactions on Rehabilitation Engi- neering, 2007, 36(5) : 961 - 1005.

二级参考文献16

共引文献25

同被引文献96

引证文献4

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部