期刊文献+

基于变量分离和交替最小化的图像修复 被引量:2

Image inpainting based on variable splitting and alternate minimization
下载PDF
导出
摘要 提出变量分离和交替最小化相结合解决l1正则优化问题,并用于非纹理图像的修复。基于变量分离技术,该算法将目标函数的l1成分和l2成分解耦,l1正则优化问题简化为一系列非约束优化问题。除了交替最小化迭代地求解这些非约束优化问题,还引入投影法加快和简化求解过程。实验在有噪声和无噪声的情况下,用提出的算法对信息丢失30%的图像进行修复。实验结果表明:该算法可有效解决包括图像修复在内的一系列图像复原问题;与某些同类算法相比,在修复速度和修复效果方面均具有优势。 An algorithm,which used variable splitting and alternate minimization to solve the l1 regularized optimization problem,was proposed and applied to image inpainting.Based on the variable splitting,the proposed algorithm decoupled the l1 and l2 portions of the objective function,which reduced the l1 regularized problem to a sequence of unconstrained optimization problems.The alternate minimization was used to solve these unconstrained optimization problems with the projection algorithm for accelerating and simplifying the resolving procedure.With and without the noise,the experiments were carried out on the images with 30% pixels missing.And the experimental results demonstrate that the proposed algorithm can solve a series of image restoration problems including the image inpainting.Compared with other similar algorithms,it shows competitive speed and inpainting results.
作者 肖宿
出处 《计算机应用》 CSCD 北大核心 2011年第8期2206-2209,共4页 journal of Computer Applications
基金 国家自然科学基金面上项目(61070090) 国家自然科学基金青年科学基金资助项目(61003270) 淮北师范大学校青年科研项目(700442)
关键词 l1正则优化问题 图像修复 变量分离 交替最小化 投影算法 l1 regularized optimization problem image inpainting variable splitting alternate minimization projection algorithm
  • 相关文献

参考文献17

  • 1BERTALMIO M, SAPIRO G, CASELLES G, et al. Image inpaiting [ C] // Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM Press, 2000:417-424.
  • 2CHAN T F, SHEN J H, ZHOU H M. Total variation wavelet in- painting [ J]. Journal of Mathematical Imaging and Vision, 2006, 25(1) : 107 - 125.
  • 3BUGEAU A, BERTALMIO M, CASELLES V, et al. A comprehen- sive framework for image inpainting [ J]. IEEE Transactions on Im- age Processing, 2010, 19(10) : 2634 -2645.
  • 4CHAN R H, WEN Y W, YIP A M. A fast optimization transfer al- gorithm for image inpainting in wavelet domains [ JJ. IEEE Transac- tions on Image Processing, 2009, 18(7) : 1467 - 1476.
  • 5EFROS A A, LEUNG T K. Texture synthesis by non-parametrlc sampling [ C] //Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Washington, DC: IEEE Computer Socie- ty, 1999:1033-1038.
  • 6BERTALMIO M, VESE L, SAPIRO G, et al. Simultaneous struc- ture and texture image inpainting [ J]. IEEE Transactions on Image Processing, 2003, 12(8) : 882 -889.
  • 7CRIMINISI A, PEREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting [ J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.
  • 8KOMODAKIS N, TZIRITAS G. Image completion using efficient belief propagation via priority scheduling and dynamic pruning [ J]. IEEE Transactions on Image Processing, 2007, 16(11): 2649- 2661.
  • 9FIGUEIREDO M A T, NOWAK R. An EM algorithm for wavelet- based image restoration [ J]. IEEE Transactions on Image Process- ing, 2003, 12(8): 906-916.
  • 10BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [ J]. SIAM Journal on Imaging Sciences, 2009, 2(1) : 183 -202.

同被引文献24

  • 1李天云,赵妍,李楠,冯国,高宏慧.基于HHT的电能质量检测新方法[J].中国电机工程学报,2005,25(17):52-56. 被引量:178
  • 2汪雄良,王正明.基于快速基追踪算法的图像去噪[J].计算机应用,2005,25(10):2356-2358. 被引量:6
  • 3ZENG Bo, TENG Zhaosheng, CAI Yulian, et al. Harmonic phasor analysis based on improved FFT algorithm[J]. IEEE Transactions on Smart Grid, 2011, 2(1): 51-59.
  • 4ELAD M, STARCK J L, QUERRE P, et al. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA)[M]. Applied and Computational Harmonic Analysis, 2005, 19(3): 340-358.
  • 5SONKA M, HLAVAC V, BOYLE R. Image processing, analysis, and machine vision[M]. Cengage Learning, 2014.
  • 6DONOHO D, KUTYNIOK t2 Microlocal analysis of the geometric separation problem[J]. Communications on Pure and Applied Mathematics, 2013, 66(1): 1-47.
  • 7BERTSEKAS D E Convex optimization theory[M]. Belmont, MA: Athena Scientific, 2009.
  • 8HERZOG R, SACHS E. Preconditioned conjugate gradient method for optimal control problems with control and state constraints[J]. SIAM Journal on MatrixAnalysis and Applications, 2010, 31 (5): 2291-2317.
  • 9WU C, ZHANG J, TAI X C. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity[J]. Inverse Problems and Imaging, 2011, 5(1): 237-261.
  • 10BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends: in Machine Learning, 2011, 3(1): 1-122.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部