期刊文献+

基于图像块分类器和条件随机场的显微图像分割

Segmentation of microscopic images based on image patch classifier and conditional random field
下载PDF
导出
摘要 针对花粉显微图像处理提出了一种自动分割方法,将有助于花粉识别系统的开发。使用归一化颜色分量训练图像块分类器,并且结合条件随机场和图割进行建模和优化,利用最大化后验概率(MAP)的方法实现花粉显微图像中花粉区域的分割。对于实验中的133幅图像,自动分割同人工分割的结果相比较,统计得到距离误差均值为7.3像素,准确率的平均值为87%。实验结果表明,使用图像块分类器和条件随机场模型可以用于花粉图像的分割。 An automatic segmentation for pollen microscopic images was proposed in this paper,which was useful to develop a recognition system of airborne pollen.First,the image patch classifier was trained with normalized color component.Then,conditional random field was employed to model pollen images and Maximum A Posterior(MAP) was used to segment the pollen areas in microscopic images,with graph cut algorithm for optimization.In the experiments,the respective average values of mean distance error was 7.3 pixels and the true positive rate was 87% on 133 images.The experimental results show that image patch classifier and conditional random field model can be used to accomplish segmentation of the pollen microscopic images.
出处 《计算机应用》 CSCD 北大核心 2011年第8期2249-2252,共4页 journal of Computer Applications
关键词 花粉显微图像 图像分割 图像块分类器 条件随机场 图割 pollen microscopic image image segmentation image patch classifier Conditional Random Field(CRF) graph cut
  • 相关文献

参考文献9

  • 1徐景先,李耀宁,张德山.空气花粉变化规律和预测预报研究进展[J].生态学报,2009,29(7):3854-3863. 被引量:24
  • 2张树恒,阳维,廖广姗,王莲芸,张素.基于形状与纹理特征的显微图像识别[J].计算机工程与设计,2011,32(4):1379-1382. 被引量:2
  • 3LANDSMEER S H, HENDRIKS E A, de WEGER L A, et al. De- tection of pollen grains in multifocal optical microscopy images of air samples [ J]. Microscopy Research and Technique, 2009, 72(6): 424 - 430.
  • 4ZHANG S, YANG W, WU Y L, et al. Abnormal region detection in gastroscopic images by combining classifiers on neighboring pat- ches [ C]// Proceedings of the 8th International Conference on Ma- chine Learning and Cybernetics. Piscataway, NJ: IEEE, 2009: 2374 - 2379.
  • 5van de SANDE, GEVERS T, SNOEK C G M. Evaluating color descrip- tors for object and scene recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1582-1596.
  • 6LEE C H, SCHMIDT M, MURTHA A, et al. Segmenting brain tumor with conditional random fields and support vector machines [ C]//Proceedings of workshop on Computer Vision for Biomedical Image Applications. Berlin: Springer, 2005:469-478.
  • 7LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data [ C] // Proceedings of the 8th International Conference on Ma- chine Learning. San Francisco: Morgan Kaufmann Publishers, 2001:282-289.
  • 8BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy minimization via graph cuts [ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2001, 23(11) : 1222 - 1239.
  • 9王班,高萍,刘洁,赵世坤,何丽明,张雨露,夏红蕾,莫斌峰,曹威,王莲芸.上海市西南部空气中气传花粉调查[J].中华临床免疫和变态反应杂志,2010,4(3):168-175. 被引量:13

二级参考文献83

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部