期刊文献+

基于GA的改进SVM算法对RBF优化算法在短期负荷预测中的应用 被引量:1

The application of improved SVM algorithm to RBF optimal algorithm in the short-term load forecasting based on GA
下载PDF
导出
摘要 高预测精度的短期负荷预测对于坚强电网非常重要,根据电力负荷特性的变化规律,提出了一种改进的基于径向基函数神经网络的短期负荷预测方法,应用经GA优化的SVM多核径向基函数去提取有用数据,提高了基于RBF神经网络的短期负荷预测精度。以美国加州春季负荷为输入数据,应用MATLAB仿真说明改进算法的优越性和其鲁棒性。 High precision short-term load forecasting is very important to the strong power gird.In this paper,an improved Radial Basis Function(RBF) neural network short-term load forecasting method is proposed,which is according to variable law of power load characteristics.Using multi-core GA-optimized radial basis function SVM to extract useful data,it improves the accuracy of short-term load forecasting based RBF neural net work.The robustness and advantages of this improved forecasting strategy is demonstrated with Matlab simulating test by using data collected from the spring load in California,United States.
出处 《长春工程学院学报(自然科学版)》 2011年第2期21-25,共5页 Journal of Changchun Institute of Technology:Natural Sciences Edition
基金 吉林省教育厅科研项目(2009259)
关键词 RBF神经网络 短期负荷预测 支持向量机 遗传算法 RBF neural network short-term load forecasting support vector machine genetic algorithm
  • 相关文献

参考文献3

二级参考文献21

  • 1董春曦,杨绍全,饶鲜,汤建龙.支持向量机推广能力估计方法比较[J].电路与系统学报,2004,9(4):86-91. 被引量:11
  • 2翟永杰,尚雪莲,韩璞,王东风.SVR在传感器故障诊断中的仿真研究[J].系统仿真学报,2004,16(6):1257-1259. 被引量:24
  • 3魏宏业,王建华,何崴.销售量预测的支持向量机建模及参数选择研究[J].系统仿真学报,2005,17(1):33-36. 被引量:16
  • 4Osuna E, Freund R, Griosi F. Training Support Vector Machines: An Application to Face Detection [C]// Proceedings of CVPR'97, New York. USA: IEEE 1997: 130-136.
  • 5Keams M. A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-test Split [J]. Neural Computation (S0899-7667), 1997, 9(5) 1143-1161.
  • 6Chapelle O, Vapnik V, Bousquet O, et al. Choosing kernel parameters for support vector machines [J]. Machine Learning (S0885-6125), 2001, 46(1): 131-160.
  • 7Duan K, Keerthi S S, Poo A N. Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters [J]. Neurocomputing (S0925-2312), 2003, 51(1): 41-59.
  • 8Hiroyuki Mori, Atsushi Yiihaha. Determinis annealing clustering for ANN-based short-term load forecasting[J], IEEE Transactions on Power Systems, 2001, 16(3): 545-551.
  • 9Gontar Z, Hatziargyrious N. Short term load forecasting with radial basis function network[C]. IEEE Porto Power Tech Conferenc, 11-13 September, 2001, Portugal(Porto),, 20-24.
  • 10Ranaweera D K, Hubele N F, Papalexopoulos A D. Application of radial basis function neural network model for short-term load forecasting[J]. IEE Proc.-Gener. Transm. Distrib., 1995, 142(1): 45-50.

共引文献50

同被引文献11

引证文献1

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部