期刊文献+

基于SVM不同核函数的多源遥感影像分类研究 被引量:8

Research on multi-source remote sensing image classification based on SVM different kernel functions
下载PDF
导出
摘要 选取同地区同时相的多光谱和高光谱影像,在实验样本和验证样本相同的情况下,采用SVM分类算法中4种不同的核函数,对2种影像进行分类实验.结果表明,对于多光谱影像,RBF核函数分类精度最高,Sigmoid最低;对于高光谱影像,Linear核函数分类精度最高,Sigmoid最低;对于同地区相同分辨率的遥感图像,在分类条件相同的情况下,多光谱影像的分类精度和高光谱的分类精度相近. The paper uses multi-spectral image and hyperspectral image of the same time in the same area as the research target,and employs four different kernel functions of SVM classification algorithm to make experiments between these two images based on the premise that the research has the same test samples and identifying samples.The experiments show that for multi-spectral image,RBF kernel function classification will produce the maximum classification precision,while Sigmoid is at its minimum;for hyperspectral images,Linear kernel function will achieve the maximum classification precision,and Sigmoid is at its minimum;for the same resolution remote sensing images at the same area,on the condition of the same classification standard,the classification precision of multi-spectral image is similar to that of hyperspectral image.
出处 《河南理工大学学报(自然科学版)》 CAS 2011年第3期304-309,共6页 Journal of Henan Polytechnic University(Natural Science)
基金 国家重点基础研究发展计划项目(2009CB226100)
关键词 SVM 核函数 多源遥感影像分类 support vector machine kernel function multi-source RS image
  • 相关文献

参考文献7

二级参考文献54

  • 1王亮申,欧宗瑛,朱玉才,侯杰,于京诺.基于SVM的图像分类[J].计算机应用与软件,2005,22(5):98-99. 被引量:18
  • 2朱述龙.纹理图像统计模型与纹理图像分割[J].测绘学报,1995,24(2):60-66. 被引量:3
  • 3黄桂兰,郑肇葆.分形几何在影像纹理分类中的应用[J].测绘学报,1995,24(4):283-291. 被引量:24
  • 4徐芳.航空影像纹理特征的分析[J].武汉大学学报:信息科学版,2002,27:126-128.
  • 5宋庆瑞,蒋平安.遥感技术导论[M].北京:科学出版社,2004.332-333.
  • 6C Codes, V Vapnik. Support Vector Networks [ J ]. Machine Learning, 1995,20:273 - 297.
  • 7B Boser, I Guyon, V Vapnik. A Training Algorithm for Optimal Margin Classifiers[ J]. PiLLshurah: ACM Press, 1992.
  • 8陈宝林.最优化理论与算法[M].北京:清华大学出版社,1996.85-90.
  • 9Huet F, Philipp S. A Multi-scale Fuzzy Classication by Knn. Application to the Interpretation of Aerial Images. The Fourteenth International Conference, 1998.
  • 10Greenberg S, Guterman H. A Neural-Network-based Classifier Applied to Real-World Aerial Images. 1994 IEEE International Conference, 1994.

共引文献183

同被引文献104

引证文献8

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部