期刊文献+

有限理性双寡头动态序贯竞争的建模与仿真 被引量:1

Modeling and Simulation of duopoly's Dynamical Sequential Competition Under Bounded Rationality
下载PDF
导出
摘要 利用非线性动力系统的分支理论研究了有限理性双寡头Stackelberg产量竞争模型,讨论了该模型均衡点的存在性与稳定性,并数值仿真出该模型倍岔、混沌等复杂的动力学现象。研究结果表明:产量调整速度的变化对模型的稳定有显著的影响;系统的波动对于双寡头并非都是不利的;领先者的先动优势可使其从某些条件下的系统波动中获利。在此基础上,运用延迟反馈控制法对Stackelberg产量竞争模型的混沌控制进行了解析分析和数值仿真,结果表明选择合适的控制因子可使模型稳定在Nash均衡。 By using the theory of bifurcations of dynamical systems, the model of sequential competition in duopoly under bounded rationality is investigated, and the existence and stability of the equilibrium point of this model are discussed. Simulation results show that the complex dynamics, such as, bifurcations, chaos are displayed. Simulation results also show that the speed of quantity adjustment has an obvious impact on the results of model, fluctuation of system isn' t harmful to both of duopoly, the first-mover advantage can make leader profit under some types of system fluctuation. In addition, chaos control of sequential competition model is analyzed with delayed feedback control method;numerical simulations indicate that Nash equilibrium of sequential competition model enable to maintainable if suitable control parameter is chosen.
作者 胡荣 夏洪山
出处 《系统仿真技术》 2011年第2期109-115,共7页 System Simulation Technology
基金 南京航空航天大学引进人才科研基金资助项目(1007-YAH10025)
关键词 有限理性 序贯竞争 STACKELBERG模型 先动优势 混沌控制 bounded rationality sequential competition Stackelberg model first-mover advantage chaos control
  • 相关文献

参考文献4

二级参考文献17

  • 1严忠,党爱军.引入时间变量的斯坦克尔伯格模型分析[J].安徽工业大学学报(社会科学版),2007,24(1):31-33. 被引量:2
  • 2车竞,唐硕,谢长强.空射导弹发射初始弹道数值仿真[J].空气动力学学报,2006,24(2):205-208. 被引量:10
  • 3Lee C J, Getson E. IHAAA applications to reducing store separation flight testing[R]. AIAA 2007 -1653.
  • 4Harish G, Pavanakumar M. Store separation dynamics using grid-free Euler solver[R]. AIAA 2006-3650.
  • 5Hall L H, Parthasarathy V. Validation of an automatcd Chimera/6-DOF methodology for multiple moving body problems[R]. AIAA 98-0753.
  • 6CFD-FASTRAN THEORY MANUAL[Z]. Version 2004, ESI CFD. Inc.
  • 7潘玉荣,贾朝勇.不同理性双寡头博弈模型的复杂性分析[J].复杂系统与复杂性科学,2007,4(2):71-76. 被引量:18
  • 8Puu T. Chaos in duopoly pricing[J]. Chaos, Solutions and Fractals, 1991, 1(6): 573-581.
  • 9Yassen M T, Agiza H N. Analysis of a duopoly game with delayed bounded rationality[J]. Applied Mathematics and Computation, 2003, 138(23): 387-402.
  • 10Agiza H N, Elsadany A A. Nonlinear dynamics in the Cournot duopoly game with heterogeneous players[J]. Physica A, 2003, 320(15): 512-524.

共引文献22

同被引文献13

  • 1姚洪兴,徐峰.双寡头有限理性广告竞争博弈模型的复杂性分析[J].系统工程理论与实践,2005,25(12):32-37. 被引量:47
  • 2张骥骧,达庆利,王延华.寡占市场中有限理性博弈模型分析[J].中国管理科学,2006,14(5):109-113. 被引量:17
  • 3王家祺,范丹.寡头垄断市场中的排污权交易分析[J].系统工程理论方法应用,2006,15(5):405-408. 被引量:14
  • 4潘玉荣,贾朝勇.不同理性双寡头博弈模型的复杂性分析[J].复杂系统与复杂性科学,2007,4(2):71-76. 被引量:18
  • 5Montgomery D W. Markets in licenses and efficient pollution control programs [ J ]. Journal of Economic Theory, 1972 ( 5 ) :395 - 418.
  • 6Ren Carmona, Juri Hinz. Risk-neutral modeling of emission allowance prices and option valuation [ R ]. [ s. l. ] :Princeton University,2009.
  • 7Aghion P, Espinosa M P, Jullien B. Dynamic duopoly with learning through market experimentation [ J ]. Economic Theory ,2009,3 ( 3 ) :517 - 539,.
  • 8Agiza H N, Hegazi A S, Elsadany A A. Complex dynamic sand synchronization of a duopoly game with bounded rationality [J]. Math Compute Simulation, 2002,58(2) :133 - 146.
  • 9Agiza H N, Hegazi A S, Elsadany A A. The dynamics of Bowely' s model with bounded rationality [ J ]. Chaos, Solutions and Fractals ,2001,12 : 1705 - 1717.
  • 10Bischi G I, Naimzada A. Global analysis of a dynamic duopoly game with bounded rationality [ R ]. Basel: Birk Houser, 1999.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部