期刊文献+

土著微生物原位修复铬渣堆场污染土壤的条件优化 被引量:7

Optimum condition of in-situ remediation of Cr(Ⅵ) polluted soil from chromium-containing slag heap by indigenous microorganism
下载PDF
导出
摘要 通过对培养基的优化,提出并研究直接添加培养基激活土著微生物的活性来进行铬渣堆场污染土壤的原位微生物修复新方法,并探讨土壤环境对土著微生物修复Cr(Ⅵ)效果的影响。研究表明:在每千克土壤中碳源葡萄糖投加量为5 g、氮源化合物A投加量为5 g、温度为30℃、土与液质量比为1:1的情况下,土著微生物可被迅速激活,在第4天时能基本去除土壤的中水溶性Cr(Ⅵ);培养基初始pH值和不添加无机盐氯化钠不影响其修复效果。 Based on the optimization of culture medium composition,the growth conditions and ability of Cr(Ⅵ) reduction,the in-situ remediation of Cr-contaminated soil can be achieved by adding culture medium in soils to stimulate the activity of indigenous microorganism.The results show that the optimal conditions for the Cr(Ⅵ) reduction by indigenous microorganism are 5 g glucose and 5 g nitrogenous compounds A per kilogram soil at 30 ℃ and the mass ratio of soil to water is 1:1.Under the optimal condition,the water soluble Cr(Ⅵ) in the soil contaminated by chromium-containing slag heap is completely removed in the fourth day.The initial pH value of culture medium do not affect Cr(Ⅵ) reduction.The inorganic salt does not need to be added into the culture medium when the in-situ remediation of Cr(Ⅵ) is carried out by the indigenous microorganism.
作者 黄顺红
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2011年第7期1741-1747,共7页 The Chinese Journal of Nonferrous Metals
基金 湖南科技计划重点资助项目(2008SK2007) 长沙市科技计划资助项目(K0802144-31)
关键词 铬渣堆场 铬污染 土著微生物 原位修复 chromium-containing slag heap Cr-contamination indigenous microorganism in-situ remediation
  • 相关文献

参考文献17

  • 1JEYASINGH J, PHILIP L. Bioremediation of chromium contaminated soil: Optimization of operating parameters under laboratory conditions[J]. Journal of Hazardous Materials, 2005, 118(1/3): 113-120.
  • 2CHEUNG K H, GU J D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review[J]. International Biodeterioration & Biodegradation, 2007, 59(1): 8-15.
  • 3MESSER J, REYNOLDS M, STODDARD L, ZHITKOVICH A.Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells[J]. Free Radical Biology and Medicine, 2006, 40(11 ): 1981-1992.
  • 4AUGUSTYNOWICZ J, GROSICKI M, HANUS-FAJERSKA E, LEKKA M, WALOSZEK A, KOLOCZEK H. Chromium(VI) bioremediation by aquatic macrophyte callitriche cophocarpa sendtn[J]. Chemosphere, 2010, 79:1077-1083.
  • 5KRISHNA K R, PHILIP L. Bioremediation of Cr(Ⅵ) in contaminated soils[J]. Journal of Hazardous Materials, 2005, 121(1/3): 109-117.
  • 6KONOVALOVA V V, DMYTRENKO G M, NIGMATULLIN R R. Chromium(VI) reduction in a membrane bioreactor with immobilized pseudomonas cells[J]. Enzyme and Microbial Technology, 2003, 33(7): 899-907.
  • 7陈晓东,常文越,冯晓斌,孙俊,邵春岩.沈抚灌区土壤生态恢复途径初步研究[J].环境保护科学,2002,28(2):33-35. 被引量:34
  • 8JEYASINGH J, SOMASUNDARAM V, PHILIP L, MURTY B S Bioremediation of Cr (Ⅵ) contaminated soil/sludge: experimental studies and development of a management model[J]. Chemical Engineering Journal, 2010, 160: 556-564.
  • 9TOKUNAGA T K, WAN J, HAZWNTC. Distribution of chromium contamination and microbial activity in soil aggregates[J]. Journal of Environmental Quality, 2003, 32(2): 541-549.
  • 10CIFUENTES F R, LINDEMANN W C, BARTON L. Chromium sorption and reduction in soil with implications to bioremediation[J]. Soil Science, 1996, 161 (4): 233-234.

二级参考文献16

  • 1常文越,陈晓东,王磊.土著微生物修复铬(Ⅵ)污染土壤的条件实验研究[J].环境保护科学,2007,33(1):42-44. 被引量:11
  • 2孟庆恒,傅珊,张海江,彭博.微生物在铬污染土壤中的分布及铬累积菌株的初步筛选[J].农业环境科学学报,2007,26(2):472-475. 被引量:9
  • 3JEYASINGH J, PHILIP L. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions[J]. Journal of Hazardous Materials, 2005, B118(1/3): 113-120.
  • 4SHAILI S, INDU S T. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm[J]. Soil Biology & Biochemistry, 2006, 38(7): 1904-1911.
  • 5SHEN H, WANG Y T. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456[J]. Applied and Environmental Microbiology, 1993, 59(11):3771-3776.
  • 6ACKERLEY D F, GONZALEZ C F, KEYHAN M, BLAKE R, MATIN A. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction[J]. Environ Microbiol, 2004, 6(8): 851-858.
  • 7OHTAKE H, FUJII E, TODA K. Reduction of toxic chromate in an industrial effluent by use of a chromate reducing strain of Enterobacter cloacae[J]. Environment Science Technology, 1990, 11(7): 663-668.
  • 8PHILIP L, IYENGAR L, VENKOBACHAR C. Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils[J]. Journal of Environment Engineering, 1998, 124(12): 1165-1170.
  • 9GUHA H, JAYACHANDRAN K, MAURRASSE F. Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions[J]. Environmental Pollution, 2001, 115(2): 209-218.
  • 10CHAI L Y, HUANG S H, YAN:G Z H, PENG B, HUANG Y, CHEN Y H. Hexavalent chromium reduction by Pannonibacter phragmitetus BB isolated from soils under chromium-containing slag heap[J]. Journal of Environmental Science and Health Part A, 2009, 44(6): 615-622.

共引文献37

同被引文献155

引证文献7

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部