期刊文献+

一类二阶非线性特征值问题的可解性

SOLVIBILITY OF A CLASS OF SECOND-ORDER NONLINEAR EIGENVALUE PROBLEMS
原文传递
导出
摘要 运用分歧方法和隐函数定理等工具分别在a(t)不变号和变号两种情形下讨论了非线性特征值问题u″+λa(t)f(u)=0,0<t<1,u(0)=u(1)=0的解集结构,这里λ∈R是实参数,f(0)>0,a∈C[0,1]. This paper is concerned with the existence of nodal solutions of boundary value problem u″+λa(t)f(u)=0,0〈t〈1,u(0)= u(1)= 0, whereλ∈R is a real parameter and f(0)〉0.The proof of the main result is based upon implicit function theorem and bifurcation techniques.
出处 《系统科学与数学》 CSCD 北大核心 2011年第5期575-582,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金项目(11061030 11026060) 西北师范大学骨干培育项目(03-69)资助课题
关键词 不定权 分歧 隐函数定理 结点解 Indefinite weight function bifurcation implicit function theorem nodal solutions
  • 相关文献

参考文献13

  • 1Henderson J and Wang H Y. Positive solutions for nonlinear eigenvalue problems. J. Math. Anal. Appl., 1997, 208: 252-259.
  • 2Ma R and Thompson B. Nodal solutions for nonlinear eigenvalue problems. Nonlinear Analysis, 2004, 59: 707-718.
  • 3Ma R. Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems. Appl. Math. Lett., 2008, 21(7): 754-760.
  • 4Ma R. Nodal solutions for singular nonlinear eigenvalue problems. Nonlinear Analysis, 2007, 66(6): 1417-1427.
  • 5Ma R and Han X. Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function. Applied Mathematics and Computation, 2009, 215: 1077-1083.
  • 6Ma R and Han X. Existence of nodal solutions of a nonlinear eigenvalue problem with indefinite weight function. Nonlinear Analysis, 2009, 71: 2119-2125.
  • 7Ma R and Han X. Nodal solutions of a nonlinear eigenvalue problem with indefinite weight function. Acta Mathematica Scientia, 2011, 31A(4): 910-917.
  • 8Binding P. Variational principles for indefinite eigenvalue problems. Linear Algebra and Its Appli- cations, 1995, 218: 251-262.
  • 9Hai D. Positive solutions to a class of elliptic boundary value problems. J. Math. Anal. Appl., 1998, 227: 195-199.
  • 10Ince E L. Ordinary Differential Eauations. Dover, New York, 1926.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部