期刊文献+

带源项的非线性扩散方程的高阶Lie-Bcklund对称

High Order Conditional Lie-Bcklund for Nonlinear Diffusion Equation with Source Terms
下载PDF
导出
摘要 研究一类在物理学及其相关领域中具有重要意义的带源项的非线性扩散方程.运用条件Lie-Bcklund对称和不变子空间相结合的方法,得到带源项的非线性扩散方程的非线性分离变量解,并对方程进行了完全分类. We considered with one kind of nonlinear diffusion equations with source terms which have many significant applications in physics and related sciences.Combing conditional Lie-Bcklund symmetry with invariant subspace theory.We construct the nonlinear separable solutions for the nonlinear diffusion equations.A complete classification for the nonlinear diffusion equations.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期665-668,共4页 Journal of Xiamen University:Natural Science
基金 国家博士后科学基金项目(20090461305) 数学天元基金项目(10926082) 陕西省教育厅专项基金项目(2010JK866 11JK0482)
关键词 非线性扩散方程 条件Lie-Bcklund对称 不变子空间 非线性分离变量解 nonlinear diffusion equation conditional Lie-Bcklund symmetry invariant subspace nonlinear separable solution
  • 相关文献

参考文献8

  • 1Lie S. Uber die Integration durch bestimmte integrale yon einer Klasse linearer partieller differentialgleichungen[J]. Arch Math, 1881,6 : 328-368.
  • 2Ovsiannikov L V. Group analysis of differential equations [M]. New York : Academic Press, 1982.
  • 3Bluman W, Cole J D. The general similarity solution of the heat equation[J]. J Math Mech, 1969,10 : 2201-2213.
  • 4Fokas A S, Liu Q M. Generalized conditional symmetries and exact solutions of nonintegrable equations[J]. Theor Math Phys, 1994,99 : 263-277.
  • 5Ovsiannikov L V. Group properties of a nonlinear heat e- quation[J]. Dokl Akad Nauk SSSR, 1959,125 :492.
  • 6Qu C Z, Estevez P G. Extended rotation and scaling gr- oups for nonlinear evolution equation[J]. Nonlinear Anal, 2003,52 : 1655-1673.
  • 7JI Li-Na QU Chang-Zheng.Conditional Symmetries and Solutions to a Class of Nonlinear Diffusion-Convection Equations[J].Communications in Theoretical Physics,2006,46(4X):668-674. 被引量:5
  • 8Qu Changzheng. Reductions and exact solutions equation of somenonlinear partial differential equations under four types of generalized conditional symmetries [J]. J Austral Math Soc Ser B,1999,41:1-40.

二级参考文献33

  • 1J.M. Goard, Euro. J. Appl. Math. 11 (2000) 215.
  • 2C.Z. Qu, L.N. Ji, and J.H. Dou, Phys. Lett. A. 343 (2005)139.
  • 3A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, and A.P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, Nauka, Moscow (1987).
  • 4English Transl.: Walter de Gruyter,.Berlin/New York (1995).
  • 5V.A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications, Chapman & Hall/CRC, Boca Raton (2004).
  • 6J.R. King, J. Phys. A: Math. Gen. 23 (1990) 5441.
  • 7E.A. Saied and R.A. El-Rahaman, J. Phys. Soc. Jpn. 68(1999) 360.
  • 8E. Beretta, M. Bertsch, and R. Dal Passo, Arch. Rat.Mech. Anal. 129 (1995) 175.
  • 9A.L. Bertozzi and M.C. Pugh, Commun. Pure Appl.Math. 49 (1996) 85.
  • 10J.R. King, Math. Comp. Mod. 34 (2001) 737.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部