期刊文献+

基于PCA和SVM算法的人脸识别 被引量:10

Face Recognition Based on PCA and SVM Algorithm
下载PDF
导出
摘要 人脸识别是计算机视觉和图像模式识别领域的一个重要技术。主成分分析(PCA)是人脸图像特征提取的一个重要算法。而支持向量机(SVM)有适合处理小样本问题、高维数及泛化性能强等多方面的优点。文章将两者结合,先用PCA算法进行人脸图像特征提取,再用SVM进行分类识别。通过基于ORL人脸数据库的计算机仿真实验表明,该方法具有很好的可行性和实际意义。 Face recognition technoloyg is an important technology in the computer vision and image pattern recognition field. Pirncipal component analysis(PCA) is an impotrant algoirthm in face feature extraction. According to the high per formanee of support vector machine(SVM) in tackling small sample size, high-dimension and its good generalization. PCA is combined with SVM algoirthm in this paper. After etracting the feature from face image by using the PCA, it use the SVM to classify face. The computer simulating experiment based on ORL face database shows the meathod is feasible.
作者 刘学胜
出处 《计算机与数字工程》 2011年第7期124-126,143,共4页 Computer & Digital Engineering
关键词 人脸识别 主成分分析(PCA) 支持向量机(SVM) face recognition pirncipal component analysis(PCA) support vector machine(SVM)
  • 相关文献

参考文献10

  • 1边肇琪,张学工,等.模式识别[M].第二版.北京:清华大学出版社,2000.
  • 2刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 3Cristianini N, Taylor J S. An introduction to support vector machine[M]. Camridge: Cambridge University Press, 2000.
  • 4李华胜,杨桦,袁保宗.人脸识别系统中的特征提取[J].北方交通大学学报,2001,25(2):18-21. 被引量:41
  • 5何国辉,甘俊英.PCA类内平均脸法在人脸识别中的应用研究[J].计算机应用研究,2006,23(3):165-166. 被引量:29
  • 6M. Turk, A. Pentland. Eigenfaces for reongnition[J]. Journal of Cognitive Neuroscience, 1991(3) : 71-76.
  • 7魏新,冯兴杰,刘山.基于支持向量机的多元文本分类研究[J].海军工程大学学报,2004,16(5):30-32. 被引量:13
  • 8Guoqi Cui, Wen Gao, Feng Jiao, et al. Face Recogni-tion Based on Support Vector Method[R]. The 5th A-sian Conference on Computer Vision, Melbourne, Australia, 23-25 January, 2002.
  • 9Guo G, LI S Z, CHAN K. Face recognition by sup-port vector machine[C]//IEEE International Cpnfer-ence on Automatic Face and Gesture Recognition. New York:IEEE, 2000 : 196-201.
  • 10ZHAO W, Krishanaswamy A, Chellappa R, et al. Discriminant analysis of principal components for face recognition[C]//3rd IEEE International Conference on Automatic Face and Gesture Recognition. Washing-ton, DC: IEEE Computer Socitey, 1998: 336-341.

二级参考文献83

  • 1董火明,高隽,汪荣贵.多分类器融合的人脸识别与身份认证[J].系统仿真学报,2004,16(8):1849-1853. 被引量:17
  • 2[1]Thorsten J. Text categorization with support vectormachines: learning with many relevant features [A]. Proceedings of ECML′98 [C]. Berlin: Springer,1998.
  • 3[2]Dumais S, Platt J, Heckerman D, et al. Inductive learning algorithms and representations for text categorization [A]. In Proceedings of ACM-CIKM98 [C]. Bethesda: ACM,1998.
  • 4[3]Vapnik V. The Nature of Statistical Learning Theory [M]. New York: Springer,1995.
  • 5[4]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters,1999,9(3) :293-300.
  • 6[5]Suyken J A K, Lusas L,Van D P, et al. Least squares support vector machine classifiers: a large scale algorithm [A]. In Proceedings of the European Conference on Circuit Theory and Design (ECCTD 99) [C]. Italy: Stresa,1999.
  • 7Hjelmas E, Low B K. Face detection: A survey. Journal of Computer Vision and Image Understanding, 2001, 83(3) : 236-274.
  • 8Yang M H, Ahuja N, Kriegman D. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 9Toyama K. Prolegomena for robust face tracking. MSR- Tech-Report-98-65, Microsoft, 1998.
  • 10Samal A, lyengar P. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition, 1992, 25(1) : 65--77.

共引文献188

同被引文献69

引证文献10

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部