期刊文献+

柔性多体系统设计灵敏度的高效计算方法

Efficient approach to compute design sensitivities of flexible multibody systems
原文传递
导出
摘要 通过使用绝对节点坐标方法和非线性应变位移关系,提出了一种组装柔性多体系统设计灵敏度方程的方法.该方法不仅可以避免推导灵敏度方程所需的大量符号计算,而且能够提高计算灵敏度的效率.给出了平面柔性曲柄滑块机构的算例,通过直接微分法与伴随变量法的对比,表明所提出的方法不仅能够保证精度,而且对于中等规模的设计灵敏度分析,能够使直接微分法达到与伴随变量法相当的效率,具有广泛的工程应用价值. In order to obtain the sensitivity equations for flexible multibody systems, a general method was proposed, which can improve the efficiency of sensitivity analysis by using the absolute nodal coordinate formulation (ANCF) and nonlinear strain-displacement relations, without using many complicated symbolic differentiations for deducing the sensitivity equations. A planar flexible crank slider example was employed to verify the proposed method through the comparison between the direct dif- ferentiation method and the adjoint variable method. Results show that not only the accuracy of the sensitivities is assured, but also the efficiency of the direct differentiation method is improved to be comparable with the adjoint variable method when the number of design variables is medium, which shows a wide engineering application value.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第7期5-8,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60874064)
关键词 动力学 灵敏度分析 柔性多体系统 绝对节点坐标 直接微分法 dynamics sensitivity analysis flexible multibody system absolute nodal coordinate for-mulation (ANCF) direct differentiation method
  • 相关文献

参考文献10

  • 1Dias J M P, Pereira M S. Sensitivity analysis of rigidflexible multibody systems [J]. Multibody System Dynamics, 1997, 1(3): 303-322.
  • 2丁洁玉,潘振宽,陈立群.基于微分/代数方程的多体系统动力学设计灵敏度分析的伴随变量方法[J].动力学与控制学报,2006,4(3):205-209. 被引量:6
  • 3Shabana A A. Flexible multibody dynamics: review of past and recent developments[J]. Multibody System Dynamics, 1997, 1(2): 189-222.
  • 4田强,张云清,陈立平,覃刚.柔性多体系统动力学绝对节点坐标方法研究进展[J].力学进展,2010,40(2):189-202. 被引量:41
  • 5Garcia-Vallejo D, Mayo J, Escalona J L, et al. Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2004, 35(4): 313-329.
  • 6Laulusa A, Bauchau O A. Review of classical approaches for constraint enforcement in multibody systems [J]. Journal of Computational and Nonlinear Dynamics, 2008, 3(1): 011004.
  • 7Bauchau 0 A, Laulusa A. Review of contemporary approaches for constraint enforcement in multibody systems[J]. Journal of Computational and Nonlinear Dynamics, 2008, 3(1): 011005.
  • 8Negrut D, Rampalli R, Ottarsson G, et al. On an implementation of the hilber-hughes-taylor method in the context of index 3 differential-algebraic equations of multibody dynamics[J]. Journal of Computational and Nonlinear Dynamics, 2007, 2(1):73-85.
  • 9Negrut D, Jay L O, Khude N. A discussion of loworder numerical integration formulas for rigid and flexible multibody dynamics [J]. Journal of Computational and Nonlinear Dynamics, 2009, 4 (2): 021008.
  • 10Ding J Y, Pan Z K, Chen L Q. Second order adjoint sensitivity analysis of multibody systems described by differential-algebraic equations [J]. Multibody System Dynamics, 2007, 18(4):599-617.

二级参考文献9

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部