期刊文献+

改进型平均移位柱状图估算概率密度并对互信息作相关分析 被引量:6

Correlation analysis of mutual information by probability density estimated from improved averaged-shifted-histogram
下载PDF
导出
摘要 将平均移位柱状图(averaged shifted histogram,ASH)概率密度估计中二次型平滑权值与均匀权值进行结合,提出一种改进的概率密度估计方法:IASH(improved averaged shifted histogram).通过相应区间内样本数目的方差确定原平滑权值与均匀权值之间的比例系数,动态的改变平滑权值:对ASH概率密度估计中边缘值部分的平滑权值按比例进行补偿,改善过平滑的问题,提高了IASH概率密度估计的精度.在此基础上应用互信息进行变量间的相关性分析,选择输入变量,实现多元时间序列的预测.采用人工数据和实际Housing数据进行仿真分析,仿真结果验证了改进后方法的有效性. We introduce the method of improved averaged-shifted-histogram(lASH) to estimate the probability density by combining the quadratic smooth weight with the uniform smooth weight. The ratio of the original smooth weight to the uniform smooth weight is dynamically adjusted according to the variance of the number of samples in the corresponding interval, thus the smooth weight for the edge part of the probability density obtained by the method of averaged-shifted- histogram(ASH) is proportionally compensated, mitigating the excessive smoothness and improving the precision in the estimation of probability density by the method of lASH. Using the estimated probability density, we perform the correla- tion analysis based on the mutual information between two variables, and select input variables to predict the multivariate time series. Simulations with the synthetic data and Housing data show the efficacy of the proposed method.
作者 韩敏 梁志平
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第6期845-850,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60674073) 国家科技支撑计划资助项目(2006BAB14B05) 国家高技术研究发展"863"计划资助项目(2007AA04Z158)
关键词 平均移位柱状图 互信息 相关性分析 时间序列预测 averaged-shifted-histogram mutual information correlation analysis time series prediction
  • 相关文献

参考文献13

  • 1RADAN H, LUCIE E Simultaneous analysis of climatic trends in multiple variables: an example of application of multivariate statis- tical methods[J]. International Journal of Climatology, 2005, 25(4): 469 - 484.
  • 2史文利,高天宝,王树恩.基于主成分分析与聚类分析的城市化水平综合评价[J].工业工程,2008,11(3):112-115. 被引量:19
  • 3HIROYUKI Y, HIDEKE Y, EIICHIRO E et al. Canonical correlation analysis for multivariate regression and its application to metabolic fingerprinting[J]. BiochemicalEngineeringJournal, 2008, 40(2): 199 - 204.
  • 4LOPEZ J M, BORRAJO J L, GARCIA E D M, et al. Multivariate analysis of contamination in the mining district of Linares[J]. Applied Geochemistry, 2008, 23(8): 2324 - 2336.
  • 5CHEN Y H, RANGARNJAN G, FENG J E et al. Analyzing multi- ple nonlinear time series with extended Granger causality[J]. Physics LettersA, 2004, 324(1): 26 - 35.
  • 6高伟,田铮.基于条件互信息的多维时间序列图模型[J].控制理论与应用,2008,25(2):257-260. 被引量:6
  • 7张佃中.非线性时间序列互信息与Lempel-Ziv复杂度的相关性研究[J].物理学报,2007,56(6):3152-3157. 被引量:24
  • 8SCOTT D W. Averaged shifted histograms: effective nonparametric estimators in several dimensions[J]. The Annals of Statistics, 1985, 13(3): 1024- 1040.
  • 9FERNADO T M K G, MAIER H R, DANDY G C. Selection of input variables for data driven models: an average shifted histogram parial mutual information estimator approach[J]. Journal of Hydrology, 2009, 367(3/4): 165 - 176.
  • 10SCOTT D W, TERRELL G R. Biased and unbiased cross-validation in density estimation[J]. Journal of the American Statistical Association, 1987, 82(400): 1131 - 1146.

二级参考文献28

共引文献46

同被引文献61

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部