期刊文献+

基于混合类电磁机制算法的混沌系统控制与同步 被引量:6

Control and synchronization of chaotic systems based on a hybrid electromagnetism-like mechanism algorithm
下载PDF
导出
摘要 混沌系统控制与同步可通过优化方法设计控制律引导混沌系统轨道来实现.类电磁机制优化算法(EM)是模拟电磁场带电粒子间吸引-排斥行为机制的一种启发式搜索方法.目前还尚未在混沌系统控制与同步问题中得到应用.本文提出一种混合类电磁机制优化算法(HEM)用于求解该优化问题,该方法采用修改的类电磁机制算法(REM)与差分进化算法(DE)相融合平衡算法对解空间的全局探索和局部开发能力,基准函数测试表明混合算法改善了全局搜索能力及求解可靠性.在此基础上,采用HEM算法引导混沌系统的轨道,搜索施加于系统的小扰动使其轨迹在短时间内跟踪到目标区域:再将混沌系统的同步问题转化为在线轨道导引问题,采用HEM优化算法解决通过典型离散Henon映射为例,数值仿真结果表明了该方法是解决混沌系统控制与同步的一种有效方法. By using optimization method, we can design the control law for controlling and synchronizing chaotic systems to operate onto the desired directional orbits of chaotic dynamical systems. The electromagnetism-like algorithna(EM) is a recta-heuristic optimization method which simulates the attraction-repulsion behavior of electrically charged particles in the process of approaching the desired points. To the best of our knowledge, there is no research work on EM for con- trol and synchronization of chaotic systems. In this paper, an effective hybrid electromagnetism-like algorithm(HEM) is presented to solve these optimization problems. The HEM combines the revised electromagnetism-like algorithm(REM) and the differential evolutionary algorithm(DE) to strive for a well balance between the global exploration and the local ex- ploitation. The experimental results of benchmark functions show that this hybrid configuration greatly improves both the global optimization performance and the reliability performance. The proposed HEM has been applied to guide the orbits of discrete chaotic systems towards the desired target region within a short period of time, under a small bounded perturba- tion. Moreover, the synchronization of chaotic systems can be considered a problem of online guiding of orbits, solved by HEM algorithm. Numerical simulation results on the Henon mapping demonstrate the effectiveness of this hybrid.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第7期1009-1014,共6页 Control Theory & Applications
基金 国家"863"计划重点资助项目(2008AA042602) 国家自然科学基金资助项目(61075078)
关键词 类电磁机制优化 差分进化 混沌系统 控制与同步 electromagnetism-like mechanism differential evolution chaotic system control and synchronization
  • 相关文献

参考文献17

  • 1SHINBROT T, OFT E, GREBOGI C, et al. Using chaos to direct tra- jectories to targets[J}. Physical Review Letters, 1990, 65(26): 3215 - 3218.
  • 2PASKOTA M, MEES A I, TEO K L. Directing orbits of chaotic dy- namical systems[J]. International Journal of Bifurcation and Chaos, 1995, 5(2): 573 - 583.
  • 3PASKOTA M, MEES A I,TEO K L. Directing orbits of chaotic sys- tems in the presence of noise: feedback correction[J]. Dynamics and Control, 1997, 7(1): 25 - 47.
  • 4杨涛,邵惠鹤.基于遗传算法混沌系统同步的研究[J].控制理论与应用,2002,19(5):789-792. 被引量:10
  • 5钟晓敏,邵世煌,方建安.用遗传算法引导混沌轨道[J].控制与决策,1998,13(2):165-168. 被引量:6
  • 6WANG L, LI L L, TANG F. Directing orbits of chaotic systems using a hybrid optimization strategy[J]. Physics LenersA, 2004, 324(1): 22 - 25.
  • 7LIU B, WANG L, JIN Y H, et al. Directing orbits of chaotic systems by particle swarm optimization[J]. Chaos, Solitons & Fractals, 2006, 29(2): 454 - 461.
  • 8LIU B, WANG L, JIN Y H, et al. Control and synchronization of chaotic systems by differential evolution algorithm[J]. Chaos, Soli- tons & Fractals, 2007, 34(2): 412- 419.
  • 9BIRBIL S I, FANG S C. An electromagnetism-like mechanism for global optimization[J]. Journal of Global Optimization, 2003, 25(3): 263 - 282.
  • 10BIRBIL S 1, FANG S C, SHEU R L. On the convergence of a population-based global optimization algorithm[J]. Journal of Global Optimization, 2004, 30 (3): 301 - 318.

二级参考文献21

  • 1叶美盈.进化策略在控制混沌中的应用[J].应用基础与工程科学学报,1999,7(2):139-143. 被引量:3
  • 2杨小芹,黎明,周琳霞.基于熵的双群体遗传算法研究[J].模式识别与人工智能,2005,18(3):286-290. 被引量:11
  • 3王晓娟,高亮,陈亚洲.类电磁机制算法及其应用[J].计算机应用研究,2006,23(6):67-70. 被引量:13
  • 4高亮,王晓娟,魏巍,陈亚洲.一种改进的类电磁机制算法[J].华中科技大学学报(自然科学版),2006,34(11):4-6. 被引量:18
  • 5Birbil S I,Fang S C. An electromagnetism-like mechanism for global optimization [J] Journal of Global Optimization, 2003, 25(3) :263 - 282.
  • 6Birbil S I. Stochastic Global Optimization Techniques [D ]. North Carolina: Department of Industrial Engineering, North Carolina State University, 2002.
  • 7Birbil S I., Fang S. C., Sheu R. L. On the convergence of a population-based global optimization algorithm[ J ]. Journal of Global Optimization, 2004,30(2) : 301 - 318.
  • 8Kaelo P, All M M. Differential evolution algofithms using hybrid mutation[ J]. Computation Optimum Application, 2007,37 (2) :231 - 246.
  • 9Chen G,Int J Bifurcation Chaos,1992年,2卷,2期,407页
  • 10STORN R,PRICE K.Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,TR-95-012[R].Berkeley:International Computer Science Institute 1995.

共引文献88

同被引文献125

引证文献6

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部