期刊文献+

马尔可夫逻辑网络研究 被引量:8

Research on Markov Logic Networks
下载PDF
导出
摘要 马尔可夫逻辑网络是将马尔可夫网络与一阶逻辑相结合的一种统计关系学习模型,在自然语言处理、复杂网络、信息抽取等领域都有重要的应用前景.较为全面、深入地总结了马尔可夫逻辑网络的理论模型、推理、权重和结构学习,最后指出了马尔可夫逻辑网络未来的主要研究方向. Markov logic networks (MLNs) is a statistical relational learning (SRL) model, which combines Markov network and first order logic. It has been applied widely in nature language processing, complex networks, information extraction, etc. This paper addresses the theoretical model of Markov logic networks (MLNs), weight and structure learning of MLNs comprehensively, and finally presents future works of MLNs.
出处 《软件学报》 EI CSCD 北大核心 2011年第8期1699-1713,共15页 Journal of Software
基金 国家自然科学基金(60970081) 国家重点基础研究发展计划(973)(2010CB327903)
关键词 MARKOV逻辑网 统计关系学习 概率图模型 推理 权重学习 结构学习 Markov logic network statistical relational learning probabilistic graphical model inference weight learning structure learning
  • 相关文献

参考文献7

二级参考文献165

  • 1孙舒杨,刘大有,孙成敏.基于后验概率的Markov逻辑网参数学习方法[J].吉林大学学报(理学版),2006,44(6):946-950. 被引量:3
  • 2孙舒杨,刘大有,孙成敏,黄冠利.统计关系学习模型Markov逻辑网综述[J].计算机应用研究,2007,24(2):1-3. 被引量:7
  • 3Koller D. Probabilistic relational models [G]// LNAI 1634: Proe of the 9th Int Workshop on Inductive Logie Programming (ILP-99). Berlin: Springer, 1999:3-13.
  • 4Getoor L. Learning statistical models from relational data [D]. Stanford, California: Stanford University, 2001.
  • 5Sanghai S, Domingos P, Weld D. Dynamic probabilistic relational models [C] //Proc of the 18th Int Joint Conf on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2003.
  • 6Hsu W, Joehanes R. Relational decision networks [C]//Proc of the ICML-2004 Workshop on Statistical Relational Learning and Connections to Other Fields (SRL-2004). Banff, Canada: IMLS, 2004:61-67.
  • 7Xu Z, Tresp V, Yu K, et al. Infinite hidden relational models [C] //Proc of the 22nd Conf on Uncertainty in Artificial Intelligence. Arlington, Virginia.. AUAI Press, 2006.
  • 8Friedman N, Getoor L, Koller D, et al. Learning probabilistic relational models [C] //Proc of the 16th Int Joint Conf on Artificial Intelligence (IJCAI-99). San Francisco: Morgan Kaufmann, 1999:1300-1309.
  • 9Getoor L, Koller D, Taskar B, et al. Learning probabilistie relational models with struetural uncertainty [C] //Proc of the AAAI-2000 Workshop on Learning Statistieal Models from Relational Data. Menlo Park, CA: AAAI, 2000:13-20.
  • 10Getoor L, Friedman N, Koller D, et al. Learning probabilistic models of relational structure [C] //Proc of the 18th Int Conf on Machine Learning (ICML-01). San Francisco: Morgan Kaufmann, 2001(1/2) : 170-177.

共引文献47

同被引文献48

引证文献8

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部