期刊文献+

一类动态非线性约束优化问题的新解法 被引量:1

Method for solving a class of dynamic nonlinear constrained optimization problem
下载PDF
导出
摘要 动态非线性约束优化是一类复杂的动态优化问题,其求解的困难主要在于如何处理问题的约束及时间(环境)变量。给出了一类定义在离散时间(环境)空间上的动态非线性约束优化问题的新解法,从问题的约束条件出发构造了一个新的动态熵函数,利用此函数将原优化问题转化成了两个目标的动态优化问题。进一步设计了新的杂交算子和带局部搜索的变异算子,提出了一种新的多目标优化求解进化算法。通过对两个动态非线性约束优化问题的计算仿真,表明该算法是有效的。 Dynamic nonlinear constrainted optimization is a class of complex dynamic optimization problems,the difficult to solve the dynamic nonlinear constrainted optimization problem is how to do with the constraint and the time(invironment) variance.In this paper,a new method for solving a class of nonlinear constrained optimization problem defined in discrete time(environment) space is given.A new dynamic entropy function based on the constraint conditions of dynamic nonlinear constrainted optimization problem is given.Using the new entropy function,the orignal optimization problem is transformed into a bi-objective dynamic optimization problem.A new crossover operator and a mutation operator with local search are designed.Based on these,a new multiobjective optimization envolutionary algorithm is proposed.The computer simulations are made on two dynamic nonlinear constrained optimization problems,and the results indicate the proposed algorithm is effective.
作者 刘淳安
出处 《计算机工程与应用》 CSCD 北大核心 2011年第22期61-63,共3页 Computer Engineering and Applications
基金 陕西省教育厅科学研究计划项目(No.09JK329) 陕西省自然科学基础项目(No.2009JM1013) 宝鸡文理学院重点科研计划项目(No.ZK1013)
关键词 动态优化 非线性约束优化 进化算法 熵函数 dynamic optimization nonlinear constrained optimization evolutionary algorithm entropy fuction
  • 相关文献

参考文献8

  • 1Branke J.Evolutionary algorithms for dynamic optimization problems-a survey[D].A/FB,University Karlsnahe,1999.
  • 2王洪峰,汪定伟,杨圣祥.动态环境中的进化算法[J].控制与决策,2007,22(2):127-131. 被引量:18
  • 3Chen Yixin, Benjamin W W.Calculus of variations in discrete space for constrained nonlinear dynamic optimizafion[C]//Pro- ceedings of the 14th International Conference on Tools with Artificial Intelligence (ICTAI' 02).Piscatway: IEEE Press, 2002: 1-8.
  • 4Liu Chun' an, Wang Yuping.New multiobjective PSO algorithm for nonlinear constrained programming problems[C]//Proceed- ings of the 2007 International Conference on Intelligent Sys- tems and Knowledge Engineering,2007 : 1439-1442.
  • 5Branke J, Kauber T, Schmidth C, et al.A multi-population ap- proach to dynamic optimization problems[C]//Proc of the Adap-tive Computing in Design and Manufacturing,Berlin,Germany, 2000: 299-308.
  • 6Branke J, Schmeck H.Designing evolutionary algorithms for dy- namic optimization problems[C]//Proc of the Theory and Appli- cation of Evolutionary Computation.Germany,Berlin:Springer- Verlag, 2002: 239-262.
  • 7Leung Y W, Wang Y P.Multiobjective programming using uni- form design and genetic algorithm[J].IEEE Tran on Systems, Man and Cybernetics Part C,2000,30(3):293-304.
  • 8Jin Y C, Sendhoff B.Constructing dynamic optimization test problems using the multiobjective optimization concept[C]// LNCS 3005: Proc of the Evolutionary Workshops 2004.Heidel- berg, Germany: Springer-Veflag, 2004: 525-536.

二级参考文献42

  • 1Gerratt S M,Walker J H.Genetic algorithms:Combining evolutionary and 'non'-evolutionary methods in tracking dynamic global optima[C].Proc of the Genetic and Evolutionary Computation Conf.San Francisco:Morgan Kaufmann Publishers,2002:359-366.
  • 2Simoes A,Costa E.Using GAs to deal with dynamic environments:A comparative study of several approaches based on promoting diversity[C].Proc of the Genetic and Evolutionary Computation Conf.San Francisco:Morgan Kaufmann Publishers,2002:698.
  • 3Tin'os R,Carvalho A.A genetic algorithm with gene dependent mutation probability for non-stationary optimization problems[C].Proc of 2004 Congress on Evolutionary Computing.Piscataway:IEEE Service Center,2004:1278-1285.
  • 4Grefenstette J J.Genetic algorithms for changing environments[C].Parallel Problem Solving from Nature.Brussels,1992:137-144.
  • 5Cobb H G,Grefenstette J J.Genetic algorithms for tracking changing environments[C].Proc of 5th Int on Genetic Algorithms.San Francisco:Morgan Kaufmann Publishers,1993:523-530.
  • 6Eriksson R,Olsson B.On the performance of evolutionary algorithms with life-time adaptation in dynamic fitness landscapes[C].Proc of 2004 Congress on Evolutionary Computing.Piscataway:IEEE Service Center,2004:1293-1300.
  • 7Andersen H C.An investigation into genetic algorithms,and the relationship between speciation and the tracking of optima in dynamic functions[D].Brisbane:Queensland University of Technology,1991.
  • 8Hocaoglu C,Sanderson A C.Planning multi-paths using speciation in genetic algorithms[C].Proc of the 3rd IEEE Int Conf on Evolutionary Computation.Piscataway:IEEE Service Center,1996:378-383.
  • 9Mori N,Kita H,Nishikawa Y.Adaptation to a changing environment by means of the thermodynamical genetic algorithm[C].Parallel Problem Solving from Nature.Berlin:Springer Publishers,1996:513-522.
  • 10Collard P,Escazut C,Gaspar A.An evolutionary approach for time dependant optimization[J].Int J on Artificial Intelligence Tols,1997,6(4):665-695.

共引文献17

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部