期刊文献+

基于物理参数贝叶斯更新的桥梁剩余强度估计研究 被引量:9

REMAINING LOAD CAPACITY ESTIMATION OF BRIDGE STRUCTURES BASED ON THE BAYESIAN UPDATED PHYSICAL PARAMETERS
原文传递
导出
摘要 考虑系统参数的随机性,将基于广义卡尔曼滤波的子结构法与贝叶斯更新方法相结合,提出了桥梁结构基于贝叶斯更新物理参数的剩余强度估计两步法:第一步,将子结构法与广义卡尔曼滤波算法相结合,成功识别出子结构及其相邻单元的物理参数;第二步,视识别出的结构物理参数为更新信息,对以蒙特卡罗仿真实验结果作为先验分布的参数进行贝叶斯更新并分别基于蒙特卡罗仿真参数和贝叶斯更新物理参数对结构进行了剩余强度估计。数值算例表明:基于贝叶斯更新物理参数估计得到的结构剩余强度明显低于基于蒙特卡罗仿真参数估计得到的结构剩余强度。该方法为测量响应信息不完备条件以及小样本抽样情况下桥梁结构剩余强度估计提供了一个较好的解决思路。 Taking the randomness of system parameters into account, this paper presents a two-step remaining load capacity estimation for bridge structures based on the Bayesian updated physical parameters. In the first step, the sub-structure method and the Extended Kalman Filter algorithm are combined to identify the physical parameters of the substructure and the adjacent elements. In the second step, the Bayesian updating process is taken and the identified physical parameters are treated as the new conditional distribution information while the Monte-Carlo simulation parameters are treated as the prior distribution information. Then, the remaining load capacity estimation is procured based on the Monte-Carlo simulation parameters and the Bayesian updated physical parameters respectively. The numerical examples show that the remaining load capacity estimation based on the Bayesian updated physical parameters is much lower than that estimated using the Monte-Carlo simulation. The method provides a good solution for remaining load capacity estimation of bridges with incomplete response information and small samples.
出处 《工程力学》 EI CSCD 北大核心 2011年第8期126-132,共7页 Engineering Mechanics
基金 国家自然科学基金项目(50878184 51008248) 国家863项目(2006AA04Z437) 西北工业大学研究生创业种子基金项目(Z200929)
关键词 剩余强度估计 贝叶斯更新 参数识别 两步法 子结构 remaining structural capacity estimation Bayesian updating parameter identification two-stepmethod substructure
  • 相关文献

参考文献10

  • 1王剑,刘西拉.结构生命周期的可靠性管理[J].岩石力学与工程学报,2005,24(17):3125-3130. 被引量:7
  • 2Beck J L, Katafygiotis L S. Updating models and their uncertainties I: Bayesian statistical [J]. Journal of Engineering Mechanics, 1998, 124(4): 455-461.
  • 3Vanik M W, Beck J L, Au S K. Bayesian probabilistic approach to structural health monitoring [J]. Journal of Engineering Mechanics, 2000, 126(7): 738-745.
  • 4Ching J, Beck J L. Bayesian analysis of phase II IASC-ASCE structural health monitoring experimental Benchmark data [J]. Journal of Engineering Mechanics, 2004, 130(10): 1233-1244.
  • 5易伟建,吴高烈,徐丽.模态参数不确定性分析的贝叶斯方法研究[J].计算力学学报,2006,23(6):700-705. 被引量:15
  • 6易伟建,周云,李浩.基于贝叶斯统计推断的框架结构损伤诊断研究[J].工程力学,2009,26(5):121-129. 被引量:36
  • 7李功标,瞿伟廉.基于应变模态和贝叶斯方法的杆件损伤识别[J].武汉理工大学学报,2007,29(1):135-138. 被引量:9
  • 8Doebling S W, Farrar C R, Prime M B, Shevitz D W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics [C]. A Literature Review. LosAlamos National Laboratory Report, LA-13070-MS. 1996.
  • 9Serdar Soyoz. Health monitoring of existing structure [D]. United States-California, University of California, Irvine, 2007.
  • 10Masanobu Shinozuka, SwagataBanerjee. Damage modeling of reinforced concrete bridges [C]. Tri-Center Meeting on Transportation Networks, Multidisciplinaty Center for Earthquake Engineering Research, 2005.

二级参考文献40

共引文献56

同被引文献68

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部