期刊文献+

基于数据挖掘和特征选择的入侵检测模型 被引量:5

A Network Intrusion Detection Model Based on Data Ming and Feature Selection Schemes
下载PDF
导出
摘要 提出了一种基于SVM特征选择和C4.5数据挖掘算法的高效入侵检测模型.通过使用该模型对经过特征提取后的攻击数据的训练学习,可以有效地识别各种入侵,并提高检测速度.在经典的KDD 1999入侵检测数据集上的测试说明:该数据挖掘模型能够高效地对攻击模式进行训练学习,能够采用选择的特征正确有效地检测网络攻击. This paper proposes a kind of intrusion detection model based on C4.5 data mining algorithm and SVM(correlation-based feature selection) based feature selection mechanism,which can effectively detect several types of attacks using the process of feature selection and attack feature training.The experiments on classic KDD 1999 intrusion dataset demonstrate our model is accurate and effective.
作者 康世瑜
出处 《微电子学与计算机》 CSCD 北大核心 2011年第8期74-76,共3页 Microelectronics & Computer
关键词 入侵检测 特征选择 C4.5算法 支持向量机 intrusion detection feature selection C4.5 algorithm SVM(Support Vector Machines)
  • 相关文献

参考文献7

  • 1Bykova M, Ostermann S, Tjaden B. Detecting network intrusions via a statistical analysis of network packet characteristics [C]// Proc. of the 33rd Southeastern Symp. on System Theory. Athens, OH. IEEE, 2001.
  • 2陈丽丽,李卫,管晓宏,祝春华.一种基于网络的入侵检测系统的研究与实现[J].微电子学与计算机,2004,21(6):129-131. 被引量:6
  • 3Quinlan J R. C4.5 : Programs for machine learning[M]. San Francisco.. Morgan Kaufmann Publishers, 1993.
  • 4Vapnik V N. The nature of statistical learning theory[R]. New York.- Springer- Verlag, 1995.
  • 5Fugate M, Gattiker J R. Anomaly detection enhanced classification in computer intrusion detection[C]// Lec- ture Notes in Computer Science. Berlin, Heidelberg, Springer-Verlag, 2002.
  • 6University of California. Knowledge discovery in databases DARPA archive Task description[EB/OL]. [2010-04-091. http://www, kdd. its. uci. edu/databases/kddcup99/ task html.
  • 7University of Waikato. Weka machine learning project [EB/OL]. [2010-04-021. http://www. CS. waikato. ac. n2/-ml/.

二级参考文献6

共引文献5

同被引文献38

  • 1魏广科.基于异常的入侵检测技术浅析[J].计算机工程与设计,2005,26(1):107-109. 被引量:10
  • 2陈康 郑纬民.云计算现状及案例.软件学报,2010,27(2):429-433.
  • 3田俊峰,刘仙跃.入侵检测数据分类模型—PCANN[J].微电子学与计算机,2007,24(9):126-129. 被引量:7
  • 4TomM Mitchell.机器学习[M].北京:机械工业出版社,2003..
  • 5Deng H,Zeng P-A,Agrawal D P.An Unsupervised Network Anomaly Detection System Using Random Projection Technique[C] //Proceedings of the 2003 International Workshop on Cryptology and Network Security.2003:593-598.
  • 6Du H,Jiao L,Wang S.Clonal Operator and Antibody Clone Algorithms[J].Proceedings of the Firs! International Conference on Machine Learning and Cybernetics,2002,4 (11):506-510.
  • 7J iazhen He, Yang Zhang, Xue Li, et al. Bayesian classi- fiers for positive unlabeled learning[C]//Proceedings of the 12th international conference on Web-age infor- mation management, BerLin, Heidelberg: Springer-Verlay, 2011 81-93.
  • 8Yi Wang, Yang Zhang. Mining data streams with skewed distribution by static classifier ensemble[J]. Studies in Computational Intelligence, 2009(214) ; 65-71.
  • 9Calvo ]3, Larranaga P, Lozano J A. Learning bayesian classifiers from positive and unlabeled examples[J]. Pattern Recognition Letters, 2007, 28 (16) ; 2375-2384.
  • 10Zhengzheng Xing, Jian Pei, Eamonn Keogh. A brief survey on sequence classification[J]. SIGKDD Explora- tions Newsletter, 2010,12(1) ; 40-48.

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部