期刊文献+

基于去噪盲分离的多个直扩信号参数估计 被引量:6

Parameters estimation of DSSS based on denoising source separation
下载PDF
导出
摘要 噪声条件下多个直扩信号混合情况下的参数估计是传统算法所无法处理的,为此提出将去噪盲分离算法应用于此问题,达到噪声消除和使多个扩频信号相互分离的目的。首先回顾了在低信噪比条件下估计单个直扩信号参数的循环谱估计技术,并且说明了盲分离算法在估计多个混合直扩信号参数的可行性。然后给出了含噪盲分离的基本模型和一种有效算法移偏快速独立分量分析(fast independent component analysis,FASTICA)。接着引出了一个算法框架——去噪盲分离,证明了经典独立成分分析(independent component analysis,ICA)算法可以统一到这个框架中。仿真结果表明了算法的有效性和实用性。 As the parameters estimation of multiple direct sequence spread spectrum(DSSS) signals in noise condition is difficult for traditional methods,the denoising source separation(DSS) method is introduced to achieve the goal of mixed-signal separation and noise reduction.First parameters estimation of the DSSS signal based on cyclic spectrum techniques is reviewed under the conditions of low SNR.And the blind source separation algorithm is explained to be feasible in mixed DSSS signal parameters estimation.Then the basic model of blind source separation and an effective algorithm called bias-removal fast independent component analysis(FASTICA) are given.An algorithm framework for blind sources separation—DSS is derived,and that classical ICA algorithms can be unified into this framework is proven.The simulation results show the effectiveness and practicability of the algorithm.
作者 汤辉 王殊
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第8期1722-1726,共5页 Systems Engineering and Electronics
基金 国防"十一五"预研项目资助课题
关键词 去噪盲分离 直扩信号 循环谱估计 移偏快速独立分量分析 denoising source separation(DSS) direct sequence spread spectrum signal cyclic spectrum estimation bias-removal fast independent component analysis(FASTICA)
  • 相关文献

参考文献13

  • 1Hyvarinen A. Fast independent component analysis with noisy data using Gaussian moments[C]// Proc. of the IEEE Interna- tional Symposium on Circuits and Systems, 1999,5:57 -61.
  • 2Douglas S, Cichocki A, Amari S. A bias removal technique for blind source separation with noisy measurements[J]. Electronics Letters, 1998,34(14) :1379 - 1380.
  • 3Pignotti A- Marcozzi D, Cifani A. A blind source separation based approaeh for speech enhancement in noisy and reverberant environment[J]. Lecture Notes in Computer Science, 2009, 56 (41) :356 - 367.
  • 4Cichocki A, Amari S. Adaptive blind signal and image processing : learning algorithms and applications [ M]. Chichester: Wiley, 2002.
  • 5郭黎利,赵冰,杨翠娥,朱朝晖.基于循环谱和矩阵变换的直扩信号参数估计[J].弹箭与制导学报,2007,27(5):258-261. 被引量:2
  • 6Gardener A. Spectral sorrelation of modulated signals: Part I- analog modulation[J]. IEEE Trans. on Communications,1987, 35(6) :584- 594.
  • 7黄春琳,柳征,姜文利,周一宇.基于循环谱包络的扩谱直序信号的码片 时宽、载频、幅度估计[J].电子学报,2002,30(9):1353-1356. 被引量:59
  • 8Hyvarinen A. A unifying model for blind separation of independ ent sources[J]. Signal Processing ,2005,85(7) : 1419 - 1427.
  • 9Hyvarinen A. Fast and robust fixed point algorithm for independent component analysis[J]. IEEE Trans. on Neural Net works, 1999,10(3) :626 - 634.
  • 10Cichocki A, Karhunen J, Kasprzak W, et al. Neural networks for blind separation with unknown number of sources [J]. NEUROCOMPUTING, 1999,24( 1), 55 - 93.

二级参考文献14

  • 1詹亚锋,曹志刚,马正新.DSSS信号的扩频序列估计[J].电子与信息学报,2005,27(2):169-172. 被引量:35
  • 2张天骐,林孝康,周正中.一种直扩信号伪码周期及序列的盲估计方法[J].电波科学学报,2005,20(3):400-405. 被引量:27
  • 3[1]Gardner W A, Spooner C M. Detection and source location of weak cyclostationary signals: Simplifications of the maximum-likelihood receiver[J]. IEEE Trans, 1993, COM-41 (6) :905 - 916.
  • 4[2]Gini F, Giannakis g B. Frequency offset and timing estimation in slowly- varing fading channels: A cyclostationary approach [ J ]. IEEE Trans,1998, COM-46(3) :400 - 411.
  • 5[3]Serpedin E, Giannakis G B, et al. Blind joint estimation of carrier frequency offset and channel using non-redundant periodic modulation procedures [A]. Statistical Signal and Array Processing, 1998,Proceedings Ninth IEEE SP Workshop [C]. 1998:288- 291.
  • 6[4]Mazzenga F, Vatalaro F. Parameter estimation in CDMA multiuser detection using cyclostationary statistics [ J ]. Electronics Letters, 1996 (2):179- 181.
  • 7[5]Manimaoham V B, Fitzgerald W J. Blind frequency offset and delay es timation of linearly modulated signals using second order cyclic statistics [A]. ASSP Proceeding of the 1998 IEEE Inter Conf [C]. 1998 (4) :2337 - 2340.
  • 8[6]Gardner W A. Measurement of spectral correlation [ J ]. IEEE Trans,1986, ASSP-34(5): 1111 - 1123.
  • 9[7]Chih-Kang C, Gardner W A. Signal-selective time-difference-of-arrival estimation for passive location of man-made signal sources in highly corruptive environments,part Ⅱ: Algorithms and performance [J]. IEEE Trans, 1992,SP-40(5): 1185 - 1197.
  • 10查光明 熊贤祚.扩频通信[M].西安:西安电子科技大学出版社,1990.118-135.

共引文献59

同被引文献61

  • 1张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875. 被引量:14
  • 2卜凯旗,任兴民,秦卫阳.燃气轮机发电机组的振动信号监测与分析系统[J].噪声与振动控制,2007,27(2):40-42. 被引量:11
  • 3ZHANG Yubo, BI Hongbo, ZHU Baoquan, et al. An improved [CA-based digital watermarking[J]. Advances in Information Scienc- es and Service Sciences,2012,4(2) : 167-:74.
  • 4HYVARINEN A. Fast independent component analysis with noisy data using Gaussian moments[C]//Proc. IEEE International Sympo- sium on Circuits and Systems. [S.1.]: IEEE Press, t 999 : 57-6 t.
  • 5S?REL?J,VALPOLA H. Denoising source separation[J].{H}JOURNAL OF MACHINE LEARNING RESEARCH,2005.233-272.
  • 6ALMEIDA M S C,VALPOLA H,S?REL?J. Separation of nonlinear image mixtures by denoising source Separa-tion[A].Charleston,SC,USA.Berlin,Spring-er-Verlag,2006.8-16.
  • 7CHEVEIGNé A. Time-shift denoising source separation[J].{H}Journal of Neuroscience Methods,2010.113-120.
  • 8HE Q,FENG Z,KONG F. Detection of signal transients us-ing independent component analysis and its application in gearbox condition monitoring[J].{H}Mechanical Systems and Signal Processing,2007,(05):2056-2071.
  • 9HYVARINEN A,HARHUNEN J,OJA E. Independent component analysis[M].{H}New York:John Wiley and Sons,Inc,2001.
  • 10Chi-Tat Leung,Wan-Chi Siu. A general contrast function based blind source separation method for convolutively mixed independent sources[J].{H}SIGNAL PROCESSING,2007,(01):107-123.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部