期刊文献+

目标数据缺失下离散动态贝叶斯网络的参数学习 被引量:11

Parameter learning of discrete dynamic Bayesian network with missing target data
下载PDF
导出
摘要 离散动态贝叶斯网络参数学习的难点在于:隐藏节点的片间转移概率获得及观测数据发生不同程度缺失。针对上述问题,提出基于目标缺失数据估计的前向递归参数学习算法。该算法利用离散动态贝叶斯网络中各观测变量与隐藏变量之间的对应关系,采用支持向量机建立观测变量间的非线性函数关系完成缺失数据估计,此基础上利用完整数据集和前向递归算法完成片内和片间参数更新。以空中目标识别为仿真背景,通过与期望最大算法对比,验证了该算法的学习效率和精度两个方面的优势。 The difficulty of discrete dynamic Bayesian network parameter learning lies in: obtaining the transition probability of hidden nodes between slices,lack of observational data in varying degrees.Focusing on the above problems,the forward recursive parameters learning algorithm based on target data missing estimation is proposed.The algorithm uses the correspondent relation between the observed variables and hidden variables in discrete dynamic Bayesian network,using support vector machine to establish a nonlinear function between observed variables for completing the missing data estimation.A complete data set and the forward recursive algorithm are applied to complete parameters updating in inter-slice and in-slice.On the background of aerial target recognition,the advantages of the proposed method at efficiency and accuracy are illustrated compared with the expectative maximization method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第8期1885-1890,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60774064)资助课题
关键词 参数学习 离散动态贝叶斯网络 数据缺失 前向递归 parameter learning discrete dynamic Bayesian network data missing forward recursion
  • 相关文献

参考文献17

  • 1Song L, Kolar M, Xing E. Time varying dynamic Bayesian net works[C]// Proc. of the 23rd Neural Information Processing Systems ,2005 : 1732 - 1740.
  • 2Campos C P, Zeng Z, Ji Q. Structure learning of Bayesian net works using constraints [C]// Proc. of the 26th Annual International Conference on Machine Learning ,2009 : 113 - 120.
  • 3Chen H, Gao X. Forwards-backwards information repairing algorithm and appliance on discrete dynamic Bayesian networks[C]//Proc, of the International Comference on Intelligent Human-Machine Systems and Cybervtetics, 2C09 : 76 - 80.
  • 4Dojer N, Oambin A, Mizera A, et al. Applying dynamic Bayes Jan networks to perturbed gene expression data[J].BMCBioin formatics, 2006,7 ( 1 ) : 249.
  • 5Saenko K, Livescu K, Glass J, feature based models for visual et al. Multistream articulatory speech recognition [J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (9) :1700 - 1707.
  • 6Hearty P, Fcnton N, Marquez D, et al. Predicting project velocity in XP using a learning dynamic Bayesian network model[J]. IEEE Trans onSoftware Enfineering,2009,35(1) :124 -137.
  • 7Rajapakse J C, Wang Y, Zheng X, et al. Probabilistie frame- work for br;dn connectivity from functional MR images[J]. IEEE Trans. on Medical Imagine ,2008,27(6):825 - 833.
  • 8Jaeger M. Pa-ameter learning for relational Bayesian networks [C]// Proc. of the 24th International Conference on Machine Learning, 2007:369 - 376.
  • 9Niculescu R S, Mitchell T M, Rao R B. A theoretical frame work for learning Bayesian networks with parameter inequality Constraints[C]// Proc. of the 20th International Joint Conference on Artifical intelligence, 2007 :155 - 160.
  • 10Campos C P, Ji Q. Improving Bayesian network parameter leaming using constraints[C] // Proc. of the 19th International Conference on Pattern Recognition, 2008 : 113 - 120.

二级参考文献37

共引文献17

同被引文献114

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部