期刊文献+

基于仿生智能纳米孔道的先进能源转换体系 被引量:7

Energy harvesting with bio-inspired synthetic nanochannels
原文传递
导出
摘要 自然界中的生命体系经过40多亿年的进化,实现了对能源的高效转换、存储和利用.特别是生物膜上的各类孔道结构在其中起着重要作用.基于仿生智能纳米通道的先进能源转换体系从生物离子通道中获取与能量转换相关的启示(例如,电鳗放电、ATP合成、视网膜、紫膜等),从原理和结构上模仿生命体系中高效能量转换的某一个侧面,通过产能材料的设计和转换器件的组装,实现机械能到电能、光能到电能、光能到化学能等不同能量形式之间的转换.我们综述了目前应用人工合成的纳米尺度孔道结构进行仿生能源转换的三个热点领域:纳米流体动能-电能转换,纳米流体反向电渗析系统和基于仿生智能纳米孔道的先进能源转换体系.基于智能纳米孔道的能源转换方法摆脱了传统发电设备所必需的机械转动装置的束缚,在可以预见的范围内,仿生产能器件的效能必将超越已有人工体系,为面向未来的能源技术的创新提供了新思路,新理论和新方法. With more than four billion years' evolution and selection,natural creatures inherit almost perfect functional structures to harvesting clean energy from their living environments.Particularly,biological ion channels and pumps on cell membrane play a crucial role in many bioelectrogenesis processes.Learning from Nature,such as the electric eels,the synthesis of ATP molecules,the Bacteriorhodopsin on retina,etc,provides new approaches for the construction of novel energy conversion systems.In this review article,we briefly summarize the three most intensively studied topics on the clean energy conversion system with bio-inspired nanochannels and nanopores,which are the nanofluidic electrokinetic conversion systems,the nanofluidic reverse electrodialysis systems,and these newly arisen advanced energy conversion system with smart synthetic ion channels.In a predictable future,the performance of these bio-inspired energy conversion system will surly exceed the present achievements of the conventional man-made systems.The bio-mimetic and bio-inspired strategies provide new insights into future energy conversion techniques.
作者 郭维 江雷
出处 《中国科学:化学》 CAS CSCD 北大核心 2011年第8期1257-1270,共14页 SCIENTIA SINICA Chimica
基金 国家重点基础研究发展计划(2011CB935700) 国家自然科学基金(20920102036 20974113)资助
关键词 仿生 能量转换 纳米孔道 清洁能源 bio-inspired energy conversion nanochannel renewable energy
  • 相关文献

参考文献112

  • 1Lindley D. The energy should always work twice. Nature, 2009, 458:138-141.
  • 2Pacala S, Socolow R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 2004, 305: 968-972.
  • 3Kamat PV. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J Phys Chem C, 2007, 11 l: 2834-2860.
  • 4Tian BZ, Zheng XL, Kempa TJ, Fang Y, Yu NF, Yu GH, Huang JL, Lieber CM. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449:885-890.
  • 5Majumdar A. Thermoelectricity in semiconductor nanostructures. Science, 2004, 303:777-778.
  • 6Minnich AJ, Dresselhaus MS, Ren ZF, Chen G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ Sci, 2009, 2:466-479.
  • 7Qi Y, McAlpine MC. N anotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ Sci, 2010, 3:1275-1285.
  • 8Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL. Self-powered nanowire devices. NatNanotechnol, 2010, 5:366-373.
  • 9Loeb S, Norman RS. Osmotic power plants. Science, 1975, 189:654-655.
  • 10van der Heyden FHJ, Stein D, Dekker C. Streaming currents in a single nanofluidic channel. Phys Rev Lett, 2005, 95:116104.

同被引文献17

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部