期刊文献+

基于形态成分分析的轴承复合故障诊断 被引量:11

Compound Fault Diagnosis for Bearings Based on Morphological Component Analysis
下载PDF
导出
摘要 独立分量分析(ICA)已被广泛运用于线性混合模型的盲源分离问题,但却有2个重要的限制:信源统计独立和信源非高斯分布。形态成分分析是最新提出的一种基于稀疏表示的信号和图像分解(分离)方法。介绍了形态成分分析的基本原理,进行了仿真说明,并应用该方法对设置了3种故障的轴承进行故障诊断,最终发现了故障特征,成功判别出了轴承的3种故障,验证了该方法在轴承故障诊断中的有效性。 The ICA is widely used in blind source separation of linear mixture model,which has two important limitations: statistically independent sources and non-Gauss distribution.The morphological component analysis(MCA) is a novel decomposition method based on sparse representation of signals and images.The basic principle of MCA is introduced and then illustrated with simulations,and the method is used to diagnose the bearing with three types of faults.Finally,the fault features are found out and the faults are distinguished successfully,which verify the validity of the method in fault diagnosis of bearing.
出处 《轴承》 北大核心 2011年第8期38-42,共5页 Bearing
基金 国家自然科学基金资助项目(50775219)
关键词 滚动轴承 形态成分分析 盲源分离 故障诊断 rolling bearing morphological component analysis blind source separation fault diagnosis
  • 相关文献

参考文献11

  • 1李志农,吕亚平,岳秀廷.基于分数Fourier变换的机械故障源盲分离方法的研究[J].轴承,2010(6):47-50. 被引量:2
  • 2田昊,唐力伟,田广,张彦.基于核独立分量分析的齿轮箱故障诊断[J].振动与冲击,2009,28(5):163-164. 被引量:13
  • 3Georgiev P G, Theis F, Cichocki A. Sparse ComponentAnalysis and Blind Source Separation of Underdeter- mined Mixtures [ J ]. IEEE Trans. Neural Network, 2005,16 (4) : 992 - 996.
  • 4Zibulevsky M, Pearlmutter B. Blind Source Separation by Sparse Decomposition in a Signal Dictionary [ J ]. Neural - Computation, 2001,13 (4) : 863 - 882.
  • 5Starch J L, Elad M, Donoho D. Redundant Multiscale Transforms and Their Application for Morphological Component Separation[J]. Advances in Imaging and E- lectron Physics, 2004,132 ( 82 ) : 287 - 348.
  • 6Starck J L, Moudden Y, Robin J. Morphological Compo- nent Analysis [ C ]. Proeeessing of SPIE, 2005, 59 (14):1-15.
  • 7Mallat S,Zhang Z, Matching Pursuit with Time Frequen- cy Dictionaries [ J]. IEEE Transactions on Signal Pro- cessing, 1993,41(12) : 3 397 -3 415.
  • 8Chen S S, Donoho D, Saunders M. Atomic Decompostion by Basis Pursuit [ J ]. SIAM Journal on Scientific Com- puting, 1999,20( 1 ) :33 - 61.
  • 9Bruce A, Sardy S, Tseng P. Block Coordinate Relaxation Methods for Nonparamatric Signal Denoising [ C ]. Pro- ceedings of the SPIE -The International Society for Op- tical Engineering, 1998 -75 - 86.
  • 10Bobin J, Moudden Y, Starck J - L. Enhanced Source Separation by Morphological Component Analysis [ C ]. IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 2006, 14 ( S ) : 833 836.

二级参考文献17

  • 1李志农,郝伟,韩捷,何永勇,褚福磊.噪声环境下机械故障源的盲分离[J].农业机械学报,2006,37(11):110-113. 被引量:22
  • 2李良敏.基于遗传算法的盲源分离在轴承诊断中的应用[J].轴承,2005(9):31-34. 被引量:13
  • 3吕亚平,李志农,韩捷.基于Choi-Williams分布的机械故障源分离技术的研究[J].矿山机械,2007,35(6):112-115. 被引量:2
  • 4Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[ M]. John Wiley, New York, 2001.
  • 5Bach F R, Jordan M I. Kernel independent component analysis [J]. JMLR,2002,3:1-48.
  • 6Comon P. Independent component analysis, a new concept? [ J]. Signal Processing, 1994,36:287 - 314.
  • 7Cardoso J F. Blind signal separation: statistical principles [ J ]. Proceedings of the IEEE, 1998,90 (8) :2009 - 2026.
  • 8Scholkopf B, Smola A J. Learning with Kernels [ M]. MIT Press,2001.
  • 9LI Zhi - nong, HE Yong - yong, CHU Fu - lei, et al. Fault Recognition Method for Speed -up and Speed - clown Process of Rotating Machinery Based on Independent Component Analysis and Factorial Hidden Markov Model [ J ]. Journal of Sound and Vibration, 2006.291(1 -2) :60 -71.
  • 10Belouchrani A, Amin M. Blind Source Separation Based on Time - frequency Signal Representations [ J ]. IEEE Trans. on Signal Processing, 1998,46 ( 11 ) : 2 888 - 2 897.

共引文献13

同被引文献135

引证文献11

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部