期刊文献+

改进蚁群算法在支持向量机中的应用 被引量:1

Application of improved ant colony algorithm in support vector machine
下载PDF
导出
摘要 提出一种改进的蚁群算法(ACA)来优化支持向量机(SVM)训练参数。该改进算法建立于每只蚂蚁只根据参数β在其前次迭代的最优解附近搜索,可快速减少搜索范围。参数β的提出可以保证蚁群快速地达到最优解。仿真结果表明:使用该方法优化SVM参数可有效避免陷入局部极值,提高收敛速度。 A new method is proposed to optimize SVM based on improved ant colony algorithm(ACA).The proposed algorithm is based on each ant searches only around the best solution of the previous iteration with β,which can reduce search space fast.β is proposed for improving ACO's solution performance to reach global optimum fairly quickly.Simulation results indicate that optimizing SVM with this method can avoid the local extremes effectively and improve the convergence speed.
出处 《传感器与微系统》 CSCD 北大核心 2011年第8期144-146,共3页 Transducer and Microsystem Technologies
基金 科技部国际科技合作项目(2008DFR10530) 河北省科技厅指导性计划资助项目(072135140) 秦皇岛市科学技术研究与发展计划资助项目(201001A064)
关键词 支持向量机 蚁群算法 参数 可行搜索空间 SVM ant colony algorithm(ACA) parameter feasible search space
  • 相关文献

参考文献6

  • 1Vapinkvn. An overview of statistical learning theory [ J ]. IEEE Transactions on Neural Networks, 1999,10 (5) :988 --999.
  • 2Lou Der-chyuan, Liu Chiang-lung, Lin Chin-lin. Message estima- tion for universal steganalysis using multi-classification supportvector machine [ J ]. Computer Standards & Interfaces, 2009, 31 (2) :420 -427.
  • 3Anderson Alvarenga de Moura Meneses, Marcelo Domeilas Mac, ha- do, Roberto Schirru. Particle swarm optimization applied tn the nuclear reload problem of a pressurized water reactor [ J]. Progress in Nuclear Energy,2009,51 (2) :319 -326.
  • 4Sun J, Feng B,Xu W. Particle swarm optimization with particles having quantum behavior[ C ]//Proc of Congress of Ew)lutionary Comoutation, CEC 2004,2004:325 --331.
  • 5倪丽萍,倪志伟,李锋刚,潘永刚.基于蚁群算法的SVM模型选择研究[J].计算机技术与发展,2007,17(9):95-98. 被引量:12
  • 6Huang Cheng-Lung,Wang Chieh-Jen. A GA-based feature selee- for support vector math hines [ J ]. tion and parameters optimization for. Expert Systems with Applications,2006,31 (2) :231 -240.

二级参考文献10

  • 1董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 2黄景涛,马龙华,钱积新.一种用于多分类问题的改进支持向量机[J].浙江大学学报(工学版),2004,38(12):1633-1636. 被引量:18
  • 3孙学勤,刘丽,付萍,王学厚.一种连续空间优化问题的蚁群算法及应用[J].计算机工程与应用,2005,41(34):217-220. 被引量:12
  • 4贺益君,俞欢军,陈德钊.基于募集机制的连续蚁群系统及其应用[J].浙江大学学报(工学版),2006,40(5):748-752. 被引量:4
  • 5Keerthi S S.Benchmark datasets[EB/OL].2001-09-12.http://guppy.mpe.nus.edu.sg/mpessk/comparison.shtml.
  • 6Joachims T.SVMlight Support Vector Machine[EB/OL].2004-02-09.http://svmlight.joachims.org.
  • 7Chen Peng-Wei,Wang Jung-Ying,Lee Hahn-Ming.Model Selection of SVMs Using GA Approach[C]//Proceedings of the International Joint Conference on Neural Networks 2004.Hungary:IEEE,2004:2035-2040.
  • 8Xu P,Chan A K.Support vector machine for multi-class signal classification with unbalanced samples[C]//Proceedings of the International Joint Conference on Neural Networks 2003.Portland:IEEE,2003:1116-1119.
  • 9Xu P,Chan A K.An efficient algorithm on multi-class support vector machine model selection[C] //Proceedings of the International Joint Conference on Neural Networks 2003.Portland:IEEE,2003:3229-3232.
  • 10Joachims T.Estimating the generalization performance of an SVM efficiently[C]//Proceedings of the 17th International Conference on Machine Learning.San Francisco:Morgan,2000:431-438.

共引文献11

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部