期刊文献+

MapReduce框架下基于字符串波形的实体识别方法 被引量:2

Entity Resolution Method Based on Wave of Strings Using MapReduce
下载PDF
导出
摘要 在云计算平台下需要读取大量数据进行分析,数据中大量指代同一实体的重复数据给数据的分析和处理带来了困难。基于数据记录间的相似度进行聚类分析是目前实体识别的主要方法之一,但其耗时较长,而且不适用于云计算环境。给出了一种能够很好地利用云计算特点的基于字符串波形的实体识别方法。该方法首先统计字符频率,按照字符频率的大小生成字符串的波形,再利用基于波形的过滤性质加快相似度的计算,进行基于相似度的聚类。理论分析和通过真实数据得出的实验结果都表明了这种方法的正确性和有效性。 Large quantifies of records need to be read and analyzed in cloud computing, many records referring to the same entity bring challenges for data processing and analysis. Clustering based on records similarity is one of the most commonly used methods in entity resolution. But existing methods of computing records similarity often cost much lime and are not suitable for cloud computing. This paper discusses that it's necessary to use wave of strings, which can achieve a high performance by using features of cloud computing, to compute records similarity, and provides a method based on wave of strings of entity resolution. The method calculates frequencies of characters, generates waves based on frequencies of characters, and computes records similarity quickly by filtering method based on waves to get clusters based on records similarity. Theoretical analysis and experimental results from real data show that the method is correct and effective.
出处 《计算机科学与探索》 CSCD 2011年第8期730-739,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61003046 60831160525 国家自然科学基金重点项目No.60933001 中国博士后科学基金No.201003447 高等学校博士学科点专项科研基金No.20102302120054 哈尔滨工业大学优秀青年教师培养计划No.HITQNJS.2009.052~~
关键词 云计算 MAPREDUCE 字符串波形 实体识别 cloud computing MapReduce wave of strings entity resolution
  • 相关文献

参考文献8

  • 1Hassanzadeh O, Miller R J. Creating probabilistic data- bases from duplicated data[J]. The VLDB Journal, 2009,18(5): 1141-1166.
  • 2Xiao Chuan, Wang Wei, Lin Xuemin, et al. Efficient similarity joins for near duplicate detection[C]//Proceed- ings of the 17th International Conference on World Wide Web, Beijing, China, April 21-25, 2008. New York, NY, USA: ACM, 2008: 131-140.
  • 3Vernica R, Carey M J, Li C. Efficient parallel set-similarity joins using MapReduce[C]//Pro- ceedings of the 2010 International Conference on Management of Data, Indianapolis, Indiana, USA, June 6-11, 2010. New York, NY, USA: ACM, 2010: 495-506.
  • 4Hayes B. Cloud computing[J]. Communications of the ACM, 2008, 51(7): 9-11.
  • 5Elmagarmid A K, Member S. Duplicate record detection: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(1): 1-16.
  • 6Dean J, Ghemawat S. MapReduce: simplified data proc- essing on large clusters[J]. Communications of the ACM,2008, 51(1): 107-113.
  • 7Liu Yongnan, Wang Hongzhi, Gao Hong. A fast entity resolution method based on wave of records[C]//Pro-ceedings of the 2011 International Conference on Con- sumer Electronics, Communications and Networks, April16-18, 2011: 4642-4645.
  • 8Arasu A, Ganti V, Kaushik R. Efficient exact set-simi- laxity joins[C]//Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea,September 12-15, 2006:918-929.

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部