摘要
在一致性绕射系数的计算等方面,菲涅耳积分尤其是复宗量菲涅耳积分的数值计算问题非常突出。本文给出的计算复宗量菲涅耳积分的小宗量级数展开和大宗量渐进展开表达式使得整个复平面的菲涅耳积分计算误差小于10- 6,并进一步找到了小宗量与大宗量的衔接部分。这种方法具有运算速度快。
In the computation of uniform diffraction coefficient,the computation of the Fresnel integral,especially the Fresnel integral of complex argument,is very diffcult.The series expansion of small argument Fresnel integral and the asymptotic expansion of big argument Fresnal integral, which method this paper gives make the error of computation of the main part of the complex argument smaller than10 -6 .And it find the connection of the big and small argument.The advantage of the method is it increase the speed of computation and decrease the usage of the memory space.
出处
《西安邮电学院学报》
1999年第4期49-52,共4页
Journal of Xi'an Institute of Posts and Telecommunications
关键词
复宗量
菲涅耳积分
数值计算
Complex argument
Fresnel intetral
Computation