期刊文献+

非局域空间光孤子临界功率的确定 被引量:1

Confirmation of Critical Power of Nonlocal Spatial Optical Solitons
原文传递
导出
摘要 目前用入射光束束宽等于出射光束束宽时对应的功率为空间孤子临界功率的方法,寻找到的功率通常不是唯一的,甚至大部分是形成呼吸子的功率。通过分析束宽随入射功率的变化曲线(W-P曲线),提出在W-P曲线的束宽变化的转折区域来寻找孤子临界功率的理论。用此理论拟合了实验测得的铅玻璃中出射束宽随入射功率变化的数据,准确地得到了铅玻璃中形成孤子的临界功率。 Presently it is believed that the incident power is just the critical power of the nonlocal spatial solitons when the output beam width equals the input the beam width. The power decided by this method is generally not one and only, even is the power of breather. A theory is brought forward that one should find the critical power of the solitons on turning area of the curve of output beam width versus the input beam power. According to this theory, the experimental data obtained in lead glass are fitted, and the exact value of the soliton critical power is obtained.
作者 寿倩
出处 《激光与光电子学进展》 CSCD 北大核心 2011年第8期147-150,共4页 Laser & Optoelectronics Progress
基金 国家自然科学基金(60908003)资助课题
关键词 非线性光学 空间光孤子 非局域 临界功率 铅玻璃 nonlinear optics spatial optical soliton nonlocal critical power lead glass
  • 相关文献

参考文献21

  • 1Y. Kominis, K. Hiznaidis. Continuous-wave-controlled steering of spatial solitons[J]. J. Opt. Soc. Am. B, 2004, 21(3) : 562-567.
  • 2J. Petter, J. Schroder, D. Drager et al.. Optical control of arrays of photorefractive screening solitons[J].Opt. Lett. , 2003, 28(6) : 438-440.
  • 3N. D. Christodoulides, E. D. Eugenieva. Blocking and routing discrete solitons in two dimensional networks in nonlinear waveguide arrays[J]. Phys. Rev. Lett., 2001, 87(23) : 233901.
  • 4L. Hadzievski, A. Maluekov, M. Stepic et al.. Power controlled soliton stability and steering in lattices with saturable nonlinearity[J].Phys. Rev. Lett., 2004, 93(3): 033901.
  • 5W. Krolikowski, Y. S. Kivshar. Soliton-based optical switching waveguide arrays[J]. J. Opt. Soc. Am. B, 1996, 13(5): 876-887.
  • 6M. J. Ablowitz, Z. H. Musslimani. Discrete diffraction managed spatial solitons[J]. Phys. Rev. Lett. , 2001, 87(25): 254102.
  • 7M. J. Ablowitz, Z. H. Musslimani. Discrete vectors spatial solitons in a nonlinear waveguide array[J]. Phys. Rev. E, 2002, 65(5): 056618.
  • 8R. A. Vicencio, M. I. Molina, Y. S. Kivshar. Switching of discrete optical solitons in engineered waveguide arrays[J].hys. Rev. E, 2004, 70(2): 026602.
  • 9R. A. Vicencio, M. I. Molina, Y. S. Kivsha. All-optical switching and application of discrete vector solitons in nonlinear cubic birefringent waveguide arrays[J].Opt. Lett., 2004, 29(24) : 2905-2907.
  • 10Y. V. Kartashov, L. C. Crasovan,A. S. Zelenina et al.. Soliton eigenvalue control in optical lattices[J]. Phys. Rev. Lett. , 2004, 93(14): 143902.

同被引文献15

  • 1A W Snyder, D J Mitchell. Accessible solitons[J]. Science, 1997, 276 (5318) : 1538-1541.
  • 2M Peccianti, C Conti, G Assanto. All-optical switching and logic gating with spatial solitons in liquid crystals [J]. Appl Phys Lett, 2002, 81(18): 3335-3337.
  • 3M Peccianti, K A Brzdakiewicz, G Assanto. Nonlocal spatial soliton interactions in nematic liquid crystals [J] Opt Lett, 2002, 27(16): 1460-1462.
  • 4C Rotschild, O Cohen, O Manela, et al: Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons and of vortex-ring solitons [J]. Phys Rev Lett, 2005, 95(21): 213904.
  • 5N I Nikolov, D Neshev, O Bang, et al: Quadratic solitons as nonlocal solitons [J]. Phys Rev E, 2003, 68(3) 036614.
  • 6P V Larsen, M P Siensen, O Bang, et al: Nonlocal description of X waves in quadratic nonlinear materials [J]. Phys Rev E, 2006, 73(3): 036614.
  • 7D Buccoliero, A S Desyatnikov, W Krolikowski, et al: Laguerre and Hermite soliton clusters in nonlocai nonlinear media [J] Phys Rev Lett, 2007, 98(5): 053901.
  • 8D M Deng, Z Xin, G Qi, et al: Hermite-Gaussian breathers and solitons in strongly nonlocal nonlinear media [J]. J Opt Soe Am B, 2007, 24(9): 2537-2544.
  • 9D Briedis, D E Petersen, D Edmundson, et al: Ring vortex solitons in nontocal nonlinear media [J]. Opt Express, 2005,13(2): 435-443.
  • 10S Lopez-Aguayo, A S Desyatnikov, Y S Kivshar, al: Stable rotating dipole solitonsin nonlocal optical media [J]. Opt Lett, 2006, 31(8): 1100-1102.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部