期刊文献+

地表环境参数时间序列重构的方法与应用分析 被引量:12

Reconstruction of Time Series Data of Environmental Parameters:Methods and Application
原文传递
导出
摘要 卫星传感器数据提取的地表环境参数是全球变化和区域资源环境研究的重要信息源。时间序列数据的重构旨在利用多种统计和数值分析方法,模拟参数的季节/年度变化规律,从而插补缺失观测值,优化时间序列数据,为相关研究提供更加完备的基础数据。目前,数据重构主要应用在植被指数、叶面积指数、地表能量平衡参数等,重构的方法包括阈值法、滤波方法和非线性拟合等。随着卫星传感器时空、波谱分辨率的提高和研究的深入,耦合了遥感反演模型和陆面过程模型的数据同化重构方法,是今后研究和应用的重要方向。 The satellite-derived environmental parameters play important roles in global change and regional resources and environment researches.Atmosphere effects and sensor limitations often lead to data products of inherently variable quality.The main goals of time series data reconstruction are to remove cloud affected observations and create gapless dataset at a prescribed time with multiple spatio-temporal interpolation and statistical methods.The conventional reconstructing algorithm include threshold method,temporal filtering method,and nonlinear simulation,etc.,and mainly applied on satellite derived vegetation index,leaf area index and surface energy balance parameters.Although methods mentioned above have been applied in related researches and received good results,they suffer from their own drawbacks which limit their use.The algorithm of MVC and MVI ignores the remarkable anisotropy of reflectivity and VI,which may conceal details of vegetation with too large interval and lead to the result of reconstructed VI data from MVC and MVI remain a lot of noises.The BISE and other threshold-based methods may make the extracted temporal information unreliable.The Fourier analysis algorithm is sensitive to spurious peaks of the VI trend line,so it may depart from the truth a lot.Much attention should be paid to data assimilation based approaches which couple remote sensing retrieval model with surface processing model.
出处 《地球信息科学学报》 CSCD 北大核心 2011年第4期439-446,共8页 Journal of Geo-information Science
基金 国家科技支撑计划课题“中国重大自然灾害孕险环境分析技术”(2008BAK50B01) 国家科技支撑计划课题“南水北调水资源综合配置技术研究”(2006BAB04A16) 国家航天局航天遥感论证中心环境星应用推广工程课题“北部湾环境综合评价与监测”(2008A02A09)
关键词 遥感参数 时间序列重构 数据同化 remotely sensed parameters time series data reconstruction data assimilation
  • 相关文献

参考文献14

二级参考文献154

共引文献445

同被引文献162

引证文献12

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部