期刊文献+

铌酸锂增韧碳纳米管/羟基磷灰石生物复合材料的低温烧结和力学性能研究 被引量:2

Low-temperature Sintering and Mechanical Properties of Lithium Nibate Toughening Carbon Nano-tubes/Hydroxyapatite Biocomposites
下载PDF
导出
摘要 以铌酸锂(LiNbO3)作为压电增韧相,碳纳米管(CNTs)/羟基磷灰石(HAp)复合粉料作为基体,通过热压烧结在较低的温度下制得一种力学性能优良的骨组织替代材料.主要研究了不同烧结温度下LiNbO3的加入对复合材料的物相组成、微观结构和力学性能的影响.结果表明:在热压烧结过程中,LiNbO3部分与HAp发生反应生成新相CaNb2O6.当烧结温度为900℃时,加入48.5wt%LiNbO3的复合材料的抗弯强度和断裂韧性分别达到135MPa和1.71 MPa.m1/2,相比基体材料分别提高了55%和109%. Carbon nano-tubes(CNTs)/hydroxyapatite(HAP) biocomposites reinforced by lithium nibate(LiNbO3) were successfully prepared by hot pressing at low temperature.The phase composition and micro-structure of the composites were characterized by X-ray diffraction(XRD),Scanning electron microscope(SEM) and Energy dispersive X-ray spectroscope(EDS).Based on in-depth analysis of mechanical properties,the toughening mechanism was discussed in detail.The results indicate that LiNbO3 addition has a great influence on mechanical properties and microstructure of the CNTs/HAp composites.The composites can be prepared at low temperature by the incorporation of LiNbO3,and LiNbO3 partially reacts with HAp to form CaNb2O6.With the rise of sintering temperature,the strength and density are improved obviously.Especially,the composite with addition of 48.5wt% LiNbO3 hot pressed at 900℃ shows excellent flexural strength and fracture toughness,of about 135 MPa and 1.71 MPa·m^1/2,respectively.In comparison with CNTs/HAp composite,the flexural strength and fracture toughness are increased 55% and 109%,respectively.Piezoelectric energy dissipation toughening and the improvement of density are the main contributions to the increase in the mechanical properties.These new composites may be promising bone substitute materials.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2011年第8期863-868,共6页 Journal of Inorganic Materials
基金 国家自然科学基金(30870610)~~
关键词 铌酸锂 羟基磷灰石 增韧 力学性能 lithium nibate hydroxyapatite toughening mechanical properties
  • 相关文献

参考文献19

  • 1Evans A G. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc., 1990, 73(2): 187-206.
  • 2Becher P F. Microstructural design of toughened ceramics. J. Am. Ceram. Soc., 1991, 74(2): 255-269.
  • 3Chen X M, Yang B. A new approach for toughening of ceramics. Materials Letters, 1997, 33(3): 237-240.
  • 4Yang B, Chen X M. Alumina ceramics toughened by a piezoelectric secondary phase. Journal of the European Ceramic Society, 2000, 20(11): 1687-1690.
  • 5Yang B, Chen X M, Liu X Q. Effect of BaTiO3 addition on structures and mechanical properties of 3Y-TZP ceramics. Journal of the European Ceramic Society, 2000, 20(8): 1153-1158.
  • 6Chen X M, Liu X Q, Liu F, et al. 3Y-TZP ceramics toughened by Sr2Nb2O7 secondary phase. Journal of the European Ceramic Society, 2001, 21(4): 477-481.
  • 7Liu X Q, Chen X M. Toughening of 8Y-FSZ ceramics by neodymium titanate secondary phase. J. Am. Ceram. Soc., 2005, 88(2): 456-458.
  • 8Liu Y G, Jia D C, Zhou Y. Microstructure and mechanical properties of a lithium tantalite-dispersed-alumina ceramic composite. Ceramics International, 2002, 28(1): 111-114.
  • 9Nagai T. Preparation of a barium titanate-dispersed-magnesia nano- composite. J. Am. Ceram. Soc., 2005, 81(2): 425-428.
  • 10Li J Y, Dai H, Zhong X H, et al. Lanthanum zirconate ceramic toughened by BaTiO3 secondary phase. Journal of Alloys and Compounds, 2008, 452(2): 406-409.

二级参考文献50

共引文献63

同被引文献16

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部