期刊文献+

基于威布尔分布的风电场微观选址优化 被引量:8

OPTIMAL MICRO-SITING OF WIND FARM BASED ON WEIBULL DISTRIIBUTION
原文传递
导出
摘要 提出基于风能全年概率分布特征的风电场微观选址优化方法。采用威布尔分布和风向玫瑰图描述风能的全年变化特性,其中威布尔分布的尺度参数和形状参数根据风速统计数据利用最小二乘法获得。以风电场单位功率发电成本最小化为目标函数,运用遗传算法进行微观选址问题的优化求解。仿真结果表明微观选址优化方案反映了风能的全年变化特性,实现了单位功率发电成本的最小化,提高了风能的利用效率。因此,风电场微观选址应系统考虑风能的全年变化特性。 Weibull distribution functions and rose maps were adopted to describe wind annual variations. The least square method was employed to obtain the scale and the shape parameters of the Weibull distribution based on wind speed statistical data. A genetic algorithm was utilized to obtain the optimal solution in terms of minimizing cost per unit power of the wind farm. The simulation results illustrate that the optimal micro-siting solution reflects the characteristics of annual wind variations, minimizes the cost per unit power and improves the efficiency of the wind farm. Therefore, the characteristics of wind annual variations should be systematically considered in the wind farm micro-siting.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2011年第7期999-1004,共6页 Acta Energiae Solaris Sinica
基金 国家高技术研究发展(863)计划项目(2007AA05Z426) 国家自然科学基金(61075064 60674096)
关键词 遗传算法 微观选址 最小二乘法 威布尔分布 genetic algorithm optimal micro-siting least square method Weibull distribution
  • 相关文献

参考文献8

  • 1Gong J Y, He D X, Sun R L, et al. Wind farm engineer- ing and technical manual[ M]. Beijing: Machinery Indus- try Press, 2004.
  • 2Mosetti G, Poloni C, Diviacco B. Optimization of wind turbine positioning in large wind farms by means of a ge- netic algorithm [ J ]. Wind Engineering and Industrial Aer- odynamics, 1994, 51(1) : 105-116.
  • 3Grady S A, Hussaini M Y, Abdullah M M. Placement of wind turbines using genetic algorithms [ J ]. Renewable Energy, 2005, 30(2): 259-270.
  • 4Burton T, Sharpe D, Jenkins N. Wind energy handbook [ M]. John Wiley & Sons Ltd, 2005.
  • 5Jensen N O. A note on wind turbine interaction [ R ]. Denmark: RiSe National Laboratory, 1983.
  • 6Katic I, Hcjstrup J, Jensen N. A simple model for cluster efficiency[ A ]. European Wind Energy Association Con- ference and Exhibition [ C ] , Rome, Italy, 1986, 407- 410.
  • 7Kiranoudis C T, Voros N G, Maroulis Z B. Short-cut de- sign of wind farms [ J ]. Energy Policy, 2001, 29 (7) : 567-578.
  • 8Sivanandam S N, Deepa S N. Introduction to genetic al- gorithms [ M ]. New York : Springer, 2008.

同被引文献85

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部