期刊文献+

基于遗传算法的图像配准研究及改进 被引量:4

Research and Improvement of Image Registration Based on Genetic Algorithm
下载PDF
导出
摘要 应用立体匹配技术,通过像点获取景物的距离信息,使得三维立体再现成为可能。图像的立体匹配是立体视觉中的一个关键问题,也是典型的"病态"问题。为了提高匹配的抗干扰能力以及全局最优性,提出了将改进的遗传算法用于立体匹配。选择图像边缘作为匹配基元,根据遗传算法容易获得全局最优解的特点,将图像的特征点进行染色体编码并重新设计比较了评价函数及相应的遗传操作,使之适合于立体匹配,并将图像的Rank变换加入其中,以提高算法的抗噪性。实验表明,该方法具有可行性。 Using stereo matching technique and the image point distance information can make the three-dimensional representation possible.The stereo image matching is a key problem for stereo vision,and also it's a typical "pathological" problem.In order to improve the matching anti-interference ability and global optimal solution,a new approach to stereo matching using the improved genetic algorithm was proposed.Image edge is used as matching primitive.According to the characteristic that genetic algorithm can easily acquire entirely optimal answers,feature points in the image are encoded as chromosomes.The evaluation function and the corresponding genetic operators are redesigned to fit in the stereo matching.Rank transform of the image is used in order to improve the antinoise ability of the algorithm.Experimental results show that the proposed method is effective.
作者 周春燕 贾渊
出处 《计算机技术与发展》 2011年第8期46-49,共4页 Computer Technology and Development
基金 国家863项目(2008AA10Z211) 校博士基金项目(08zx7101)
关键词 立体匹配 遗传算法 边缘检测 Rank变换 stereo matching genetic algorithm edge detection Rank transform
  • 相关文献

参考文献7

二级参考文献67

共引文献205

同被引文献38

  • 1冯林,严亮,黄德根,贺明峰,滕弘飞.PSO和Powell混合算法在医学图像配准中的应用研究[J].北京生物医学工程,2005,24(1):8-12. 被引量:13
  • 2王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 3Zitova B, l'lusser J. Image registration methods : a storey [ J ]. Image and Vision Computing,2003,21 ( 11 ) :977-1000.
  • 4Collignon A, Maes F, Delaere D, et al. Automated multimodal- ity medical image registration using information theo[ C ]// Proceedings of Information Processing in Medical Imaging. [ s. 1. ] :Is. n. ] ,1995:263-274.
  • 5Rangarajan A ,Chui H, Duncan J S. Rigid point feature regis- tration using mutual information[ J]. Medical Image Analysis, 1999,3(4) :425-440.
  • 6Redmond C, Yukich J. Asymptotic for Euclidean functional with power weighted edges[ J]. Stochastic Presses and Their Applications, ! 996,61 ( 2 ) :289-304.
  • 7Pal D, Poczos B, Szepesvari C. Estimation of Rnyi Entpy and Mutual Information Based on Generalized Nearest-neigh- bor Graphs[ C]//NIPS. [ s. 1. ]: [ s. n. ] ,2010.
  • 8Maes F, Collignon A, Vandermeulen D, et al. Muhimodalitv image registration by maximization of mutual infi,rmation [ J ]. IEEE Transactions on Medical Imaging, 1997,16 ( 2 ) : 187 - 198.
  • 9Pluim J,Maintz J, Viergever M. Image registration by maximi- zation ff combined mutual information and gradient infirma- tion[ J ]. IEEE Transactions on Medical Imaging, 2000, 19 (8) :809-814.
  • 10Luan H X, Qi F H,Xue Z,et al. Muhimodality image registra- tion by maximization of quantitative- qualitative measure of mutual information [ J ]. Pattern Recognition ,2008,41 ( 1 ) : 285 -298.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部