期刊文献+

时滞系统的随机间歇耦合控制同步法 被引量:1

Synchronization of Delayed Systems by Stochastically Intermittent Control
下载PDF
导出
摘要 提出了利用随机间歇耦合实现同步的一种新方法,该方法的特点是控制器仅在一个周期的一段时间内起作用,而且控制器的耦合反馈系数是随时间随机变化的。通过对双时滞Ikeda系统的混沌同步、反同步、网络同步行为数值仿真,证实了该方法的有效性。 A novel scheme,stochastically intermittent feedback control scheme,is presented to realize chaos synchronization of time-delay systems.Different from the linear feedback scheme or adaptive feedback scheme,the feedback strength of the present scheme doesn't need to be constant or self-adaptive,and the method has great flexibility for just requiring its feedback strength varying randomly in a certain time at every period.Numerical simulations on synchronization,anti-synchronization and network synchronization of chaotic Ikeda system with two time delays are proposed to show the validity of this scheme.
作者 李爽
出处 《贵州大学学报(自然科学版)》 2011年第3期21-23,30,共4页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金(10802061) 陕西省教育厅基金(09JK438) 西安统计研究院基金(09JD06)
关键词 时滞 随机噪声 同步 周期间歇控制 time-delay stochastic noise synchronization periodically intermittent control
  • 相关文献

参考文献15

  • 1胡海岩,王在华.非线性时滞动力系统的研究进展[J].力学进展,1999,29(4):501-512. 被引量:65
  • 2徐鉴,裴利军.时滞系统动力学近期研究进展与展望[J].力学进展,2006,36(1):17-30. 被引量:66
  • 3Li P, Cao J, Wang Z. Robust impulsive synchronization of coupled delayed neural networks with uncertainties [ J ]. Physics A, 2007 (373) : 261 -272.
  • 4Li C D, Liao X F, Wang K W. Chaotic lag synchronization of coupled time - delayed systems and its applications in secure communication[J]. Physica D, 2004(194) : 187 -202.
  • 5Lin W, He Y. Complete synchronization of the noise - perturbed Chua' s circuits[J].Chaos, 2005 (15) : 023705.
  • 6Sun Y, Cao J. Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation[J]. Phys. Lett. A, 2007(364) : 277 -285.
  • 7Cao J, Lu J. Adaptive synchronization of neural networks with or without time - varying delays[ J]. Chaos, 2006,16 013133.
  • 8Maritan A, Banavar J R. Chaos, Noise, and Synchronization[ J ]. Phys Rev Lett, 1994(72) : 1451 -1454.
  • 9Herzel H, Freund J. Chaos, noise, and synchronization reconsidered[J]. Phys Rev E, 1995(52) :3238 -3241.
  • 10Toral R, Mirasso C R,Hernandez -Garcia E, et al. Analytical and numerical studies of noise - induced synchronization of chaotic systems [ J ]. Chaos, 2001 ( 11 ) : 665 - 673.

二级参考文献53

共引文献104

同被引文献22

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部