期刊文献+

基于小波包与PCA方法对水下目标识别研究 被引量:5

Underwater Target Recognition Based on Wavelet Packet and Principal Component Analysis
下载PDF
导出
摘要 水下目标信号的分类识别一直是信号处理工程领域的研究难点。针对水下信号发声机理十分复杂与成分多样,导致表征其特征的数据量较大且维数较高,目标识别率低。要解决上述问题,需要很大的计算成本,并影响识别特性量的效率,提出了一种采用小波包与主分量分析(Principal Component Analysis,PCA)相结合的特征提取方法。通过小波包分解与重构得到水下目标辐射噪声的初始特征;用PCA方法实现对高维特征向量的优化处理。采用BP神经网络作为分类器对三类目标进行识别仿真。结果表明,减少计算量的同时,水下目标信号得到了较好的优化提取。 Underwater target classification and recognition is a research challenge of signal processing application,and as a result of complicated target signal and diverse ingredient,the character data are great and with high dimension,which needs huge calculating cost.Under this situation,a new approach to extracting noise radiated from underwater target based on wavelet packet and principal component analysis is presented.Firstly Initial characteristics are obtained from underwater target by using decomposition and reconstruction of wavelet packet.Then principal component analysis is used to get the final characteristics.The final characteristics are used by designed neural network to recognize the noise radiated from underwater target.Experiment results show that the method of extracting features has better classification effect with low calculating cost.
出处 《计算机仿真》 CSCD 北大核心 2011年第8期8-10,111,共4页 Computer Simulation
关键词 小波包 主分量分析 目标识别 Wavelet packet Principal component analysis(PCA) Target recognition
  • 相关文献

参考文献5

二级参考文献28

共引文献49

同被引文献46

  • 1邓晋,潘安迪,肖川,刘姗琪.基于迁移学习的水声目标识别[J].计算机系统应用,2020,29(10):255-261. 被引量:10
  • 2童峰,陆佶人,方世良.水声目标识别中一种轴频提取方法[J].声学学报,2004,29(5):398-402. 被引量:16
  • 3Zhao Jingying , Guo Hai , Sun Xingbin. Macrozooplankton Image Edge Detection Using Wavelet Packet Decomposition [ C ]. Pro- ceeding of International Conference on Advanced Measurement and Test. 2010.
  • 4Yin Yilong , Zhang Hongwei , Wang Hui. Wavelet Packet Trans- form for Fingerprint Image Segmentation[C]. Proceeding of Intern -ational Conference on Artificial Intelligence: 50 Years' Achieve- ments, Future Directions and Social Impacts, 2006.
  • 5Li Kaiduan, Zhang Yuye Li, Yingjie. Research of sea surface ship target auto - recognition based on wavelet transform [ C ]. IEEE 2010 International Conference on System Science, Engineering Deaign and Manufacturing Informa - Tization, 2010 : 193 - 195.
  • 6Terrance West, et al. Utilization of local and global hyperspectral features via wavelet packet and muhiclassifiers for robust taget recognition [ C ]. Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management, 2009:2127 -2130.
  • 7RafaelCGonzalez,RichardEWoods.著,阮秋琦,等译.数字图像处理(第二版)[M].北京:电子工业出版社,2007-8:313-321.
  • 8葛哲学,沙威.小波分析理论与MATLABR2007实现(第一版)[M].北京:电子工业出版社,2007-10:120-121.
  • 9Z Y Zhang. Flexible camera calibration by viewing a plane from unknown orientations, International Conference on Computer Vi- sion ( ICCV ' 99 ) [ C ]. Kerkyra: IEEE Xplore Digital Library, 1999.
  • 10周阿娟,郭相科,谢瑶.基于小波包分解的声目标识别[J].空军工程大学学报(自然科学版),2007,8(6):40-43. 被引量:4

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部