期刊文献+

A Categorification of Quantum sl_2

A Categorification of Quantum sl_2
下载PDF
导出
摘要 In this paper, we categorify the algebra Uq(sl2) with the same approach as in [A. Lauda, Adv. Math. (2010), arXiv:math.QA/0803.3662; M. Khovanov, Comm. Algebra 11 (2001) 5033]. The algebra U =Uq(sl2) is obtained from Uq(sl2) by adjoining a collection of orthogonal idempotents 1λ,λ ∈ P, in which P is the weight lattice of Uq(sl2). Under such construction the algebra U is decomposed into a direct sum λ∈p 1λ,U1λ. We set the collection of λ∈ P as the objects of the category U, 1-morphisms from λ to λ′ are given by 1λ,U1λ, and 2-morphisms are constructed by some semilinear form defined on U. Hence we get a 2-category u from the algebra Uq(sl2).
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第7期37-45,共9页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grant Nos. 10975102, 10871135, 11031005, and 10871227
关键词 quantum affine algebra CATEGORIFICATION 集合代数 量子 昆士兰 线性形式 大学 幂等元 数学 正交
  • 相关文献

参考文献15

  • 1J. Baez and J. Dolan, Contemp. Math. 230 (1998) 1.
  • 2J. Bernstein, I. Frenkel, and M. Khovanov, Selecta Math. (N.S.) 2 (1999) 199.
  • 3A.A. Beilinson, G. Lusztig, and R. MacPherson, Duke Math. J. 61(2) (1990) 655.
  • 4A. Lauda, Adv. Math. (2010) arXiv:math.QA/0803.3652.
  • 5G. Lusztig, Introduction to Quantum Groups, Volume 110 of Progress in Mathematics, Birkhauser Boston Inc., Boston, MA (1993).
  • 6M. Khovanov, Commun. Algebra 29(11) (2001) 5033.
  • 7M. Jimbo and T. Miwa, CBMS Regional Conference Series in Mathematics, 85 AMS (1994).
  • 8M. Jimbo, Topics from Representation of Uq(g), Nankai Lecture Series in Mathematical Physics, ed. M.L. Ge, World Scientific, Singapore (1992).
  • 9B. Deng and J. Du, Pacific J. Math. 220 (2005) 33.
  • 10B. Deng and J. Du, Adv. Math. 191 (2005) 276.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部