期刊文献+

基于图像轮廓分析的堆叠葡萄果粒尺寸检测 被引量:20

Overlapped Grapes Berry Size Inspection Based on Image Contour Analysis
下载PDF
导出
摘要 提出一种堆叠葡萄果粒尺寸检测算法:首先通过8-邻域轮廓跟踪提取果穗轮廓曲线,然后基于改进的曲线旋转和局部极值判断方法搜索曲线上的凹点,从而将曲线分割成分段圆弧以实现果粒的分割和识别,进而采用最小二乘分段曲线拟合计算果粒直径。通过对巨峰葡萄的检测试验表明,该算法对葡萄果穗的果粒正确识别率在35%左右,用于统计葡萄的平均果粒直径,平均误差为0.61 mm,最大误差为1.69 mm,根据果粒大小分级的准确率为72.7%。 An algorithm was presented to detect size of berries on grapes bunch.Firstly,the contour curves of the grapes bunch were extracted by contour tracking.Then concave points were detected by rotating the curve continuously and searching local extremum points so that the curves were divided into circular arcs,in which each arc corresponds to one berry of the grapes.Finally,the least-square curve fitting method was applied to calculate the radius of the berries.Experiments of Jufeng grapes showed that by using the presented method,about 35% berries on a grapes bunch could be recognized.In the estimation of average berry radius of a bunch,the average error was 0.61mm,the maximum error was 1.69mm and berry size grading accuracy was 72.7%.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2011年第8期168-172,121,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(31071320) 高等学校博士点专项科研基金资助项目(20090008110007)
关键词 葡萄 果穗 尺寸检测 图像处理 Grapes Cluster Size inspection Image processing
  • 相关文献

参考文献12

  • 1Tadhg Brosnan, Da-Wen Sun. Inspection and grading of agricultural and food products by computer vision systems--a review [ J ]. Computers and Electronics in Agriculture, 2002,36 ( 2 - 3 ) : 193 - 213.
  • 2陈英,廖涛,林初靠,万虎,李伟.基于计算机视觉的葡萄检测分级系统[J].农业机械学报,2010,41(3):169-172. 被引量:34
  • 3Shahin M A, Symons S J. Seed sizing from images of non-singulated grain samples[ J]. Canadian Biosystems Engineering, 2005, 47:49 - 55.
  • 4Wang W, Paliwal J. Separation and identification of touching kernels and dockage components in digital images[ J]. Canadian Biosystems Engineering, 2006, 48 : 1 - 7.
  • 5康维,欧阳成,王广志,丁辉.基于分水岭变换的彩色细胞图像分割[J].清华大学学报(自然科学版),2006,46(3):414-417. 被引量:9
  • 6Chien C F, Lin T T. Leaf area measurement of seedlings using elliptical Hough transform [ J ]. Transactions of the ASAE, 2002, 45(5): 1669-1 677.
  • 7黎自强,滕弘飞.广义Hough变换:多个圆的快速随机检测[J].计算机辅助设计与图形学学报,2006,18(1):27-33. 被引量:40
  • 8Shen L, Song X, Iguchi M, et al. A method for recognizing particles in overlapped particle images[ J ]. Pattern Recognition Letters, 2000, 21(1) : 21 -30.
  • 9阮晓东,赵文峰.煤粉显微图像中重叠颗粒识别的方法[J].煤炭学报,2005,30(6):769-772. 被引量:6
  • 10Markus Honkanen, Pentti Saarenrinne, Tuomas Stoor, et al. Recognition of highly overlapping ellipse-like bubble images [J]. Measurement Science Technology, 2005,16(9) : 1 760 - 1 770.

二级参考文献39

  • 1丁岩,傅祖芸,张大明.用计算机对染色体进行自动配对及打印核型图[J].遗传,1993,15(1):32-33. 被引量:3
  • 2Tadhg Brosnan, Da-Wen Sun. Inspection and grading of agricultural and food products by computer vision systems-a review[J].Computers and Electronics in Agriculture, 2002,36 (2 - 3 ) : 193 - 213.
  • 3Philippe Blanc. Unit for sorting and packaging products capable of being hung on a hooking member for the purpose of their conveyance, such as bunches of fruits, in particular table grapes or truss tomatoes: US,6957940[ P]. 2005 -10- 25.
  • 4NY/T470-2001鲜食葡萄[S].
  • 5Dah-Jye Lee, James K Archibald, Chang Yuchou. Robust color space conversion and color 'distribution analysis techniques for date maturity evaluation[ J ]. Journal of Food Engineering, 2008, 88 (3) : 364 - 372.
  • 6Tao Y, Heiemann P H, Varghese Z, et al. Machine vision for color inspection of potatoes and apples[ J]. Transactions of the ASAE, 1995, 38(5) : 1 555 - 1 561.
  • 7Bato P M, Nagata M, Cao Q, et al. Study on sorting system for strawberry using machine vision ( part 2) [ J]. Journal of the Japanese Society of Agricultural Machinery, 2000,62 (2) : 101 - 110.
  • 8Sarkar N, Wolfe R R. Feature extraction techniques for sorting tomatoes by computer vision[ J]. Transactions of the ASAE, 1985, 28(3) : 970 -979.
  • 9Blasco J, Aleixos N, Molto E. Machine vision system for automatic quality grading of fruit [ J ]. Biosystems Engineering, 2003,85(4) :415 -423.
  • 10Chong V K, Kondo N, Ninomiya K, et al. Features extraction for eggplant fruit grading system using machine vision[ J]. Applied Engineering in Agriculture, 2008, 24 (5) : 675 - 684.

共引文献101

同被引文献264

引证文献20

二级引证文献224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部