期刊文献+

基于正态逆高斯模型的非下采样Contourlet变换图像去噪 被引量:11

Using Normal Inverse Gaussian Model for Image Denoising in NSCT Domain
下载PDF
导出
摘要 提出一种基于正态逆高斯先验模型的非下采样Contourlet变换图像去噪算法.在非下采样Contourlet变换域中,以正态逆高斯模型为先验模型,对图像分解系数的稀疏分布统计建模,估计每个子带内的模型参数,在贝叶斯最大后验概率估计准则下推导出与正态逆高斯模型相应的阈值函数表达式,以此对图像进行去噪处理.对于被加性高斯白噪声污染的图像,实验结果表明该去噪算法能有效地去除图像中的高斯白噪声,提高图像的峰值信噪比值,在边缘特征方面保持了良好的视觉效果. A novel non-subsampled Contourlet transform denoising scheme based on the normal inverse Gaussian prior(NIG) and Bayesian estimation has been proposed.Normal inverse Gaussian model is used to describe the distributions of the image coefficients of each subband in non-subsampled Contourlet transform domain,corresponding threshold function is derived from the model using Bayesian maximum a posteriori probability estimation theory.This scheme achieves enhanced estimation results for images that are corrupted with additive Gaussian noise over a wide range of noise variance.The simulation results indicate that the proposed method can remove Gaussian white noise effectively,improve the peak signal-to-noise ratio of the image,and keep better visual result in edges information reservation as well.
作者 贾建 陈莉
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第7期1563-1568,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60703117 No.60703109 No.61075050 No.11071281) 陕西省教育厅自然科学基金(No.2010JK865) 西北大学科学研究基金(No.NC0921)
关键词 去噪 非下采样CONTOURLET变换 正态逆高斯模型 Bayesian估计 denoising non-subsampled Contourlet transform normal inverse Gaussian model Bayesian estimation
  • 相关文献

参考文献5

二级参考文献71

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2练秋生,孔令富.具有多方向选择性的小波构造[J].电子学报,2005,33(10):1905-1909. 被引量:6
  • 3练秋生,孔令富.圆对称轮廓波变换的构造[J].计算机学报,2006,29(4):652-657. 被引量:12
  • 4Donoho D L. De-noising by soft-thresholding [J]. IEEE Trans. on Inform. Theory, 1995, 41(3): 613-627.
  • 5Abramovich F, Sapatinas T, and Silverman B W. Wavelet thresholding via a Bayesian approach IJl. J. of the Royal Statist. Society, Series B, 1998, 60(3): 725-749.
  • 6Pi zurica A, Philips W, and Lemahieu I, et al.. A joint inter-and intrascale statistical model for wavelet based Bayesian image denoising [J]. IEEE Trans. on Image Proeing, 2002, 11(5): 545-557.
  • 7谭山.脊波双框架系统与自然图像的多变量统计模型[D].[博士论文],西安电子科技大学,2007.
  • 8Foi A, Katkovnik V, and Egiazarian K. Pointwise shapeadaptive DCT for high-quality denoising and deblocking of grayscale and color images [J]. IEEE Trans. on Image Processing, 2007, 16(5): 1395-1411.
  • 9Portilla J, Strela V, and Wainwright M, et al. Image denoising using scale mixtures of gaussians in the wavelet domain [J]. IEEE Trans. on Image Processing, 2003, 12(11): 1338-1351.
  • 10Starck J L, Candes E J, and Donoho D L. The curvelet transform for image denoising [J]. IEEE Trans. on Image Processing, 2002, 11(6): 670-684.

共引文献115

同被引文献72

  • 1袁国武,魏骁勇,徐丹.基于掌纹的身份鉴别[J].计算机辅助设计与图形学学报,2005,17(12):2590-2595. 被引量:11
  • 2徐凤,何玉琳,章海军.一种基于傅里叶变换的双级匹配掌纹识别系统[J].光学仪器,2007,29(3):64-68. 被引量:7
  • 3钱春强,王继成.四叉树理论在分形图像编码中的应用[J].计算机工程与应用,2007,43(23):61-63. 被引量:9
  • 4戴维,于盛林,孙栓.基于Contourlet变换自适应阈值的图像去噪算法[J].电子学报,2007,35(10):1939-1943. 被引量:52
  • 5Guo Z H, Zuo W M, Zhang L, et "al. A unified distance measurement for orientation coding in palmprint verification [ J ]. Neurocomputing,2010, 73(4 -6) :944-950.
  • 6Zhang D, Kanhangad V, Luo N, et al. Robust palmprint verification u- sing 2D and 3D features[ J]. Pattern Recognition, 2010, 43 ( 1 ) :358 - 368.
  • 7Zhang D, Guo Z H, Lu G M, et al. An online system of multi-spectral palmprint verification[ J]. IEEE Transactions on Instrumentation and Measurement, 2010,59 ( 2 ) :480 - 490.
  • 8Yuen P C, Lai J H. Face representation using independent component analysis[]]. Pattern Recognition, 2002, 35 (6) :1247-1257.
  • 9Hsieh P C, Tung P C. A novel hybrid approach based on subpattern technique and whitened PCA for face recognition[ J] . Pattern Recogni- tion, 2009, 42 (5) :978-984 .
  • 10Connie T, Teoh A, Goh M, et al. Palmprint recognition with PCA and ICA[C. Image and Vision Computing, Massey University, Palmer- ston North, New Zealand, 2003:227 -232.

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部