期刊文献+

一阶微分方程的周期解(英文) 被引量:2

Periodic solution of first-order differential equation
下载PDF
导出
摘要 利用迭代分析方法讨论了一类一阶微分方程周期解的存在性,并得到一些新的结果。 By means of the iterative analysis method, the existence for periodic solution of first-order differential equations is considered in this paper. Some new results are obtained.
作者 何莲花
出处 《贵州师范大学学报(自然科学版)》 CAS 2011年第3期100-102,140,共4页 Journal of Guizhou Normal University:Natural Sciences
基金 supported by Foundation of the Education Institution of Guizhou Province(20090038)
关键词 迭代分析 周期解 存在性 iterative analysis periodic solution existence
  • 相关文献

参考文献13

  • 1何莲花,汤庆,刘安平.一阶微分方程的周期解(英文)[J].徐州师范大学学报(自然科学版),2008,26(2):90-93. 被引量:2
  • 2J. J. Nieto,N. Alvarez-Noriega.Periodic boundary value problems for nonlinear first order ordinary differential equations[J]. Acta Mathematica Hungarica . 1996 (1-2)
  • 3Okochi H.On the existence of periodic solutions to nonlin-ear abstract parabolic equations. Journal of the Mathematical Society of Japan . 1998
  • 4Nieto J J.Existence of periodic solutions for first orderdifferential equations. Applied Mathematics and Computation . 1984
  • 5Li Fuyi,Liang Zhangping.Existence of positive periodicsolutions to nonlinear second order differential equations. Journal of Applied Mathematics . 2005
  • 6Nieto J J.Basic theory for nonresonance impulsive period-ic problems of first order equations. J Math Anal Ap-pl . 1997
  • 7Liu Yansheng.Multiple solutions of periodic boundary val-ue problems for first order differential equations. Com-puters and mathematics with Applications . 2007
  • 8He Mengxing.Global Existence and Stability of Solutionsfor Reaction Diffusion Functional Differential Equations. Journal of Mathematical Analysis and Applications . 1996
  • 9He Mengxing,Liu Anping.Stability for large systems ofpartial functional differential equations:iterative analysismethod. Journal of Applied Mathematics . 2002
  • 10Y.L.Li,A.P.Liu,Q.X.Ma,and X.M.Wang.Existence and stability for periodic boun- dary value problem of first order differential equations. Dynamics of Continuous Dis- crete and Impulsive Systems-Series A-Mathematical Analysis . 2007

二级参考文献12

  • 1Lakshmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989.
  • 2Okochi H. On the existence of periodic solutions to nonlinear abstract parabolic equations[J]. J Math Soc Japan, 1998,40:541.
  • 3Nieto J J. Existence of periodic solutions for first order differential equations[J]. Appl Math Comput, 1984,15(3) : 221.
  • 4Jiang Datting,Nieto J J,Zuo Weijie. On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations[J]. J Math Anal Appl, 2004,289 (2) : 691.
  • 5Nieto J J, lvarez-Noriega N. Periodic boundary value problems for nonlinear first order ordinary differential equations [J]. Acta Math Hungar,1996,71(1-2) :49.
  • 6Li Fuyi, Liang Zhangping. Existence of positive periodic solutions to nonlinear second order differntial equations[J]. Appl Math Lett,2005,18( 11 ) : 1256.
  • 7Nieto J J. Basic theory for nonresonance impulsive periodic problems of first order equations[J]. J Math Anal Appl, 1997,205(2):423.
  • 8Liu Yansheng. Multiple solutions of periodic boundary value problems for first order differential equations[J]. Comput & Math with Appl,2007,54(1):1.
  • 9He Mengxing. Global existence and stability of solutions for reaction diffusion functional differential equations[J]. J Math Anal Appl,1996,199(3):842.
  • 10He Mcngxing, Liu Anping. Stability for large systems of partial functional differential equations: iterative analysis mcthod[J]. Appl Math and Comput, 2002,132 ( 2-3) : 489.

共引文献1

同被引文献13

  • 1王晓燕,杨俊元.具有Logistic增长和年龄结构的SIS模型[J].数学的实践与认识,2007,37(15):99-103. 被引量:9
  • 2Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination varying total population size [ J]. Math- ematical and Computer Modelling,2002,35:1235-1243.
  • 3Kermack W O, Mc Kendrick A G. Contribution to the mathematical theory of epidemics[J]. Proc. Roy. Soc., 1932,138(1): 55-83.
  • 4Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination varying total population size[J]. Mathe- matical and Computer Modeling, 2002,35:1 235-1 243.
  • 5Su Ying,Wei Junjie,Shi Junping. Hopf bifurcation in a dif- fusive logistic equation with mixed delayed and instanta- neous density dependence[J]. Dynamics and Differential Equations, 2012,24 : 897-925.
  • 6Shengle Fang, Minghui Jiang. Stability and hopf bifurca- tion for a regulated logistic growth model with discrete and distributed delays[J]. Communications in Nonlinear Science and Numerical Simulation, 2009,14 ( 12 ) : 4 292- 4 303.
  • 7Huaixing Lia, Yoshiaki Muroyab, Yukihiko Nakatab, et al. Global stability of nonautonomous logistic equations with a piecewise constant delay[J]. Nonlinear Dynamics, 2010,11(3):2 115-2 126.
  • 8Shanshan Chen,Junping Shi. Stability and hopf bifurcation in a diffusive logistic population model with nonlocal delay effeet[J]. Journal of Differential Equations, 2012, 253 (12):3 440-3 470.
  • 9徐为坚.具有种群Logistic增长及饱和传染率的SIS模型的稳定性和Hopf分支[J].数学物理学报(A辑),2008,28(3):578-584. 被引量:18
  • 10杨俊元,郑福,王晓燕,张凤琴.一类具有Logistic增长和病程的SIR模型[J].数学的实践与认识,2009,39(11):120-124. 被引量:2

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部