期刊文献+

锆铁复合氧化物颗粒对As(Ⅴ)的去除研究 被引量:5

ARSENIC(Ⅴ) REMOVAL WITH A GRANULAR ZIRCONIUM-IRON OXIDE ADSORBENT
原文传递
导出
摘要 系统研究了锆铁氧化物颗粒吸附剂(GZI)对As(Ⅴ)的去除性能,考察了反应时间、溶液pH、初始As(Ⅴ)浓度、共存离子等反应条件的影响.同时评价了吸附后材料的脱附性能及动态处理后材料的安全性.实验结果显示,初始浓度低于20 m.gL-1时,5 h后As(Ⅴ)在GZI吸附剂上达到平衡,初始浓度为50 m.gL-1时,24 h内As(Ⅴ)在GZI吸附剂上未达到平衡.吸附过程符合准二级速率方程,吸附开始3.0 h内,吸附主要受颗粒内扩散控制.在pH 3.0—9.0的范围内,As(Ⅴ)在GZI表面吸附不受pH影响,显示出良好的pH适用性,意味着在地下水常见的pH范围内,吸附效率不受pH影响.在pH=7.0时,As(Ⅴ)平衡浓度为13.8 m.gL-1时,该颗粒吸附剂对As(Ⅴ)的去除容量为20.75 m.gg-1,优于多数已报道的颗粒除砷吸附剂.共存离子实验结果显示,HCO-3、F-、腐殖酸对As(Ⅴ)的去除存在不同程度影响,其余共存离子在中性pH条件下对As(Ⅴ)去除影响不大.碱液脱附实验表明,3.0%的NaOH适合于对吸附后的GZI进行脱附.对使用后的吸附剂颗粒进行的TCLP测试证实其是惰性的、可以安全填埋.以上结果显示GZI吸附剂是一种能应用于实际处理的除砷吸附剂. Arsenic(Ⅴ)adsorption on a granular zirconium-iron oxide(GZI)adsorbent was investigated under various conditions of adsorption time,initial solution pH,initial arsenic(Ⅴ) concentration and co-existing substances.Kinetic results revealed that the adsorption reached equilibrium after 5 h with an initial concentration of As(Ⅴ) below 20 mg·L^-1,and the adsorption did not achieve equilibrium after 24 h at an initial concentration of 50 mg·L^-1.The adsorption process was well described by a pseudo-second-order kinetic model.During the initial 3 h,the adsorption was controlled by intrapatical diffusion.The optimum operation pH for As(Ⅴ) removal was in a broad range,from 3.0 to 9.0,which meant As(Ⅴ) removal would not be affected under natural pH conditions found in common groundwater.A maximum adsorption capacity of 20.75 mg·g^-1 was achieved at pH 7.0,which was much higher than those of many reported sorbents.The As(Ⅴ) desorption was inhibited to some extent in the presence of HCO-3,F-,and humic acid,while little effect was found in the presence of other matters.The best desorption concentration of NaOH for GZI adsorbents regeneration was about 3.0%.In the column tests,with an influent As(Ⅴ) concentration of 500 μg·L-1 and SV of 2 h^-1,2433 bed volumes of water was treated before As(Ⅴ) concentration in effluent reached 10 μg·L^-1.The toxicity characteristic leaching procedure(TCLP) test showed that the used granular adsorbent was inert and could be safely land filled.The results indicated that this granular adsorbent was material for As(Ⅴ) removal in practical use.
出处 《环境化学》 CAS CSCD 北大核心 2011年第8期1396-1404,共9页 Environmental Chemistry
基金 中央高校基本科研业务费专项资金资助(YX2011-13) 北京市科技新星计划(2008A33) 教育部科学技术重点项目(108018) 863探索课题(2007AA06Z301)资助
关键词 As(Ⅴ) 锆铁复合氧化物 吸附 颗粒吸附剂 arsenic(Ⅴ) zirconium-iron oxide adsorption granular adsorbent
  • 相关文献

参考文献26

  • 1Mohan D, Pittman C U. Arsenic removal from water/wastewater using adsorbents --A critical review [ J ]. J Hazard Mater, 2007,142 ( 1/ 2) :1-53.
  • 2仙玲玲,杨磊.生物体抗砷机制的研究进展[J].中国地方病学杂志,2004,23(1):92-93. 被引量:91
  • 3孙笑非,胡春.Zr-Fe双组分复合除砷吸附剂的优化制备及性能评价[J].环境工程学报,2010,4(4):843-846. 被引量:4
  • 4Guo H, Stuben D, Bemer Z. Adsorption of arsenic(Ⅲ) and arsenic( Ⅴ ) from groundwater using natural siderite as the adsorbent[ J]. J Colloid Interface Sci, 2007,315( 1 ) : 47-53.
  • 5Jeong Y, Fan M, Singh S, et al. Evaluation of iron oxide and aluminum oxide as potential arsenic ( Ⅴ) adsorbents [ J ]. Chem Eng Process, 2007,46 (10) : 1030-1039.
  • 6Zhu M, Paul K W, Kubicki J D, et al. Quantum chemical study of arsenic ( Ⅲ, Ⅴ ) adsorption on Mn-Oxides : Implications for arsenic ( Ⅲ) Oxidation [ J]. Environ Sci Technol, 2009,43:6655-6661.
  • 7Raichur A, Panvekar V. Removal of As (Ⅴ ) by adsorption onto mixed rare earth oxides [ J ]. Sep Sci Technol, 2002,37 (5) :1095-1108.
  • 8Bourke M F, Nguyen I-I V. Inorganic contaminant removal from water[ P]. US Patent App. 20,060/011,550, 2005.
  • 9Zhang Y, Yang M, Huang X. Arsenic ( Ⅴ ) removal with a Ce ( Ⅳ ) -doped iron oxide adsorbent [ J 1. Chemosphere, 2003,51 (9) :945-952.
  • 10Chang F, Qu J, Liu H, et al. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: Preparation and evaluation[J]. J Colloid Interface Sci, 2009,338(2) :353-358.

二级参考文献32

  • 1Balaji T.,Yokoyama T.,Matsunaga H.Adsorption and removal of As(V) and As(III) using Zr-loaded]ysine diacetic acid chelating resin.Chemosphere,2005,59 (8):1169-1174.
  • 2Biswas B.K.,Inoue J.I.,Inoue K.,et al.Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel.Journal of Hazardous Materials,2008,154(1 -3):1066-1074.
  • 3Suzuki T.M.,Bomani J.O.,Matsunaga H.,et al.Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic.Reactive and Functional Polymers,2000,43 (1-2):165-172.
  • 4Seko N.,Basuki F.,Tamada M.,et al.Rapid removal of arsenic(V) by zirconium (IV) loaded phosphoric chelate adsorbent synthesized by radiation induced graft polymerization.Reactive and Functional Polymers,2004,59(3):235 -241.
  • 5Soler-Illia G.J.D.A.,Candal R.J.,Regazzoni A.E.,et al.Synthesis of mixed copper-zinc basic carbonates and Zn-doped tenorite by homogeneous alkalinization.Chem.Mater.,1997,9(1):184-191.
  • 6Reed B.E.,Vaughan R.,Jiang,L.Q.As(III),As(V),Hg,and Pb removal by Fe-oxide impregnated activated carbon.J.Environ.Eng.,2000,126(9):869 -873.
  • 7Smedley P.L.,Kinniburgh D.G.A review of the source,behaviour and distribution of arsenic in natural waters.Applied Geochemistry,2002,17 (5):517-568.
  • 8Rahman M.M.,Sengupta M.K.,Ahamed S.The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi-one of the 85 arsenic affected blocks in West Bengal,India.Science of The Total Environment,2005,338 (3):189-200.
  • 9Heijman S.G.J.,van Paassen A.M.,Van der Meet W.G.J.,et al.Adsorptive removal of natural organic matter during drinking water treatment.Water Science and Technology,1999,40(9):183-190.
  • 10Lenoble V.,Bouras O.,Deluchat V.,Serpaud B.,et al.Arsenic adsorption onto pillared clays and iron oxides.Journal of Colloid and Interface Science,2002,255 (1):52 -58.

共引文献93

同被引文献62

  • 1牛凤奇,纪锐琳,朱义年,刘辉利.地下水砷污染的研究进展[J].广西轻工业,2007,23(4):85-86. 被引量:13
  • 2Meenakshi, Maheshwari R. C. Fluoride in drinking water andits removal. J. Hazard. Mater. ,2006, 137(1):456-463.
  • 3Fawell J.,Bailey K.,Chilton J.,et al. Fluoride in drink-ing water. London, UK : World Health Organization(WHO),2006.
  • 4Mohapatra M.,Anand S.,Mishra B. K.,et al. Review offluoride removal from drinking water. J. Environ. Man-age. ,2009, 91(1) : 67-77.
  • 5Sujana M. G.,Anand S. Iron and aluminium based mixedhydroxides : A novel sorbent for fluoride removal from aque-ous solutions. Appl. Surf. Sci.,2010, 256 ( 23 ):6956-6962.
  • 6Thakre D.,Jagtap S.,Sakhare N.,et al. Chitosan basedmesoporous Ti-Al binary metal oxide supported beads fordefluoridation of water. Chem. Eng. J. , 2010, 158(2):315-324.
  • 7Liu H.,Deng S. B. , Li Z. J.,et al. Preparation of Al-Ce hybrid adsorbent and its application for defluoridation ofdrinking water. J. Hazard. Mater. ,2010, 179(1-3): 424-430.
  • 8Wu X. M. , Zhang Y.,Dou X. M.,et al. Fluoride re-moval performance of a novel Fe-Al-Ce trimetal oxide ad-sorbent. Chemosphere ,2007, 69(11) : 1758-1764.
  • 9Maliyekkal S. M.,Sharma A. K.,Philip L. Manganese-oxide-coated alumina : A promising sorbent for defluorida-tion of water. Water Res. ,2006 , 40( 19) : 3497-3506.
  • 10Alagumuthu G.,Rajan M. Equilibrium and kinetics ofadsorption of fluoride onto zirconium impregnated cashewnut shell carbon. Chem. Eng. J.,2010,158 ( 3 ):451-457.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部