期刊文献+

多维加权社会网络中的个性化推荐算法 被引量:8

Personal recommendation algorithm in multidimensional and weighted social network
下载PDF
导出
摘要 个性化推荐是解决Internet中信息过载的重要工具,在研究有关个性化推荐的技术和相关动态的基础上,以用户实际应用为驱动,提出一种多维加权社会网络中的个性化推荐算法。首先,该算法构建了用户之间的多维加权网络;然后利用复杂网络的聚类方法——CPM算法寻找邻居用户;最后基于用户之间的相似性做出推荐。实验结果表明,应用该算法的多维网络的推荐系统与基于内容推荐系统和协同过滤推荐系统相比,有较高的查全率和准确率,个性化推荐质量有了一定程度的提高。 Personal recommendation is a crucial implementation to solve the problem of information overloading on the Internet. On the basis of researching personal recommendation skills and corresponding technologies, an application-driven personal recommendation algorithm in multidimensional and weighted social network was proposed. First, this algorithm built multidimensional and weighted social network between users, then applied the complex network clustering method--CPM (Clique Percolation Method) to find neighbor users, finally made recommendation on the grounds of the similarity between users. The experimental results show that the recommendation system of multidimensional network applying this algorithm can achieve higher recall and precision compared to content-based and collaborative filtering recommendation systems, and the quality of personal recommendation has been improved to some extent.
出处 《计算机应用》 CSCD 北大核心 2011年第9期2408-2411,2428,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(6097000460975081) 山东省研究生教育创新计划项目(SDYY10059)
关键词 个性化推荐 社会网络 权重 复杂网络 CPM聚类 personal recommendation social network weight complex network CPM ( Clique Percolation Method) clustering
  • 相关文献

参考文献11

  • 1ROMERO C, VENTURA S. Educational data mining: a survey from 1995 to 2005 [ J]. Expert Systems with Applications, 2007, 33 (1) : 135 - 146.
  • 2ALBERT R, BARABASI A. Statistical mechanics of complex network [ J]. Reviews of Modern Physics, 2002, 74(2) : 47 -97.
  • 3NEWMAN M J. The structure and function of complex network [ J]. SIAM Review, 2003,45 (2) : 167 - 256.
  • 4EIRINAKI M, VAZIRGIANNIS M, KAPOGIANNIS D. Web path recommendations based on page ranking and Markov models [ C]// WIDM '05: Proceedings of the 7th Annual ACM International Work- shop on Web Information and Data Management. New York: ACM, 2005:2-9.
  • 5LIU R R, JIA C X, ZHOU T, et al. Personal recommendation via modified collaborative filtering [ J]. Physica A, 2009, 388(4) : 462 - 468.
  • 6CHANG Y I, SHEN J H, CHEN T I. A data mining-based method for the incremental update of supporting personalized information filtering [ J]. Journal of Information Science and Engineering, 2008, 24 (1) : 129 - 142.
  • 7SARWAR B, KARYPIS G, KONSTAN J, et al. hem-based collaborative filtering recommendation algorithms [ C]// WWW'01: Proceedings of the 10th International World Wide Web Conference. New York: ACM, 2001:285 -295.
  • 8ZHANG Y-C, MEDO M, REN J, et al. Recommendation model based on opinion diffusion [J]. Europhysics Letters, 2007, 80(6): 68003.
  • 9ZHOU T, JIANG L-L, SU R-Q, et al. Effect of initial configuration on network-based recommendation [ J]. Europhysics Letters, 2008, 81(5) : 58004.
  • 10PALLA G, DERENYI I, FARKAS I, et al. Uncovering the overlapping community structures of complex networks in nature and society [J]. Nature, 2005,435(7043) : 814 -818.

二级参考文献56

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900.
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818.
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248.
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663.
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667.

共引文献211

同被引文献156

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部